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D. Imboden, Zürich, Switzerland
R. L. Jaffe, Cambridge, MA, USA
R. Lipowsky, Golm, Germany
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Preface

This volume contains selected lectures presented at the Spanish Relativity Meet-
ing on Relativistic Astrophysics held at the Escuela Técnica Superior de Inge-
nieros Navales of Madrid, Spain, in September 2001.

The meeting centered on the study of several aspects of Relativistic As-
trophysics from various viewpoints: theoretical, numerical and observational.
Lectures and contributions dealt with issues related to black holes (accretion,
thermodynamics, gravitational collapse, stability), numerical and perturbative
aspects of astrophysical processes (black hole evolution, relativistic stars, jet
hydrodynamics. . . ) and production and detection of gravitational waves. Other
topics and animations are enclosed in the accompanying CD-ROM.

Lectures and contributions are intended to cover the gap between undergrad-
uate courses and current research in the field, including the most recent advances
in Relativistic Astrophysics.

Madrid, Spain, Leonardo Fernández-Jambrina
July 2002 Luis Manuel González-Romero
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Relativistic Astrophysics

Leonardo Fernández-Jambrina1 and Luis Manuel González-Romero2
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Arco de la Victoria s/n, E-28040-Madrid, Spain

2 Departamento de F́ısica Teórica II, Universidad Complutense de Madrid,
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Abstract. This chapter is devoted to the origins of relativistic astrophysics, both from
the theoretical and observational point of view. Supernova explosions, pulsars, active
galactic nuclei and gamma-ray bursts are some of the observed processes that are the
object of this discipline. On the other hand, the intriguing features of black holes,
singularities and hypotheses like the no-hair conjecture and cosmic censorship have
been discussed for decades. Perturbative and numerical approaches are mandatory to
tackle most of these issues.

1 Introduction

The term relativistic astrophysics was coined in the sixties but has its roots in
1931 when Chandrasekhar discovered the existence of a limiting mass for white
dwarfs [1]. He arrived at the conclusion that if the mass of a star is above a
value it will not evolve to a white-dwarf stage. Therefore other choices have to
be found. The alternatives proposed by the works by Oppenheimer and Volkov
[2] and Oppenheimer and Snyder [3] (1939) were the collapse to form a neutron
star or a black hole. Even when these alternatives sound revolutionary and very
interesting, it was not until the sixties that the relativistic effects began to have
some influence in astrophysics, when the need to explain the features of the
recently discovered quasars appeared. The immense amount of energy emitted
by such a small region does not allow another explanation that a compact and
very massive object requiring a relativistic treatment. The term relativistic as-
trophysics is used for the first time to name the first Texas Symposium (1963),
developed to discuss the quasar phenomenon and related topics. After forty years
there are large accumulated observational evidences (pulsars, quasars and active
galactic nuclei, supernova explosion, collapsars and hipernovae, microquasars, X-
Ray binaries, X-Ray burst, jets, gamma ray bursts, . . . ) of the existence in our
universe of very compact objects (white dwarfs, neutron stars, and black holes),
the description of which needs to be done in a relativistic framework. Relativistic
Astrophysics tries to draw a theoretical picture where all these highly relativistic
radiation phenomena fit smoothly.

The observational data are for us as some of the pieces of an incomplete
puzzle which we have to solve. Some of these data correspond to several aspects
of the same process. When the relation among some of the different aspects is
established we begin to figure the image that the puzzle, finally, will show.

L. Fernández-Jambrina, L.M. González-Romero (Eds.): LNP 617, pp. 1–12, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 L. Fernández-Jambrina and L.M. González-Romero

In this introduction we would like to describe roughly some of the features
of these phenomena, just to develop a framework for the following chapters.

2 Some Observational Phenomena

The subject of the book is mainly theoretical. Therefore, to bridge the gap
with experimental observations, in this section we describe briefly some of the
phenomena treated in relativistic astrophysics.

Supernova explosions are classified in two types by the features of their spec-
trum; type I has no hydrogen lines and type II has hydrogen lines.

Type II supernova explosions are believed to come from gravitational collapse
of supergiant stars [4]. In its evolution a star more massive than 8 M� after the
thermonuclear stages continues to evolve until it reaches the Chandrasekhar
mass (1.4 M�). In this situation the relativistic gas has a soft equation of state
and is compressed by gravity. In just a second the core of the star, after living
for ten millions years burning hydrogen to produce heavier elements, implodes
to something of the size of some tens of kilometers and densities of the order of
1014 g/cm3. At nuclear densities matter is not compressible and the core bounces,
rebounding into the infalling inner mantle and generating a strong shock wave.
The shock formed at a radius of 20 - 30 kilometers has to cross many tens of
solar masses of infalling material. The heavy nuclei it encounters are split into
nucleons and also neutrinos of all three flavours are radiated (the initial neutrino
luminosity is approximately of 1054 erg/s). As a consequence the shock stalls at
a radius of 100-200 km forming a quasi-stationary accretion shock. The infalling
shells of matter reach it, are shock compressed and heated and are deposited
on the protoneutron star. The problem is to determine how the accretion shock
is revived into a supernova explosion (actually Type II supernova). The solu-
tion points to the neutrinos [5]. They do not stream out immediately but must
diffuse to escape. The surface of emission is named neutrinosphere. Instead of
milliseconds they need seconds to leave the protoneutron star. The neutrinos
detected from SN1987A [6] confirm this scale of time and the number of them
is compatible with a neutrino total emission of 2 − 3 1053 erg. The accreted
mantle is being heated by the absorption of the escaping neutrinos. The energy
transfer from the core to the mantle and the accretion from the collapsing outer
core are essential for the supernovae mechanism. The supernova phenomenon is
a competition between the neutrino luminosity and the accretion mass process.
When the stalled shock reaches the critical relation, the supernova explosion is
produced, sending to the interstellar medium heavy elements and leaving behind
a neutron star or a black hole [7].

Type I supernova explosions appear in a different scenario. Some white dwarfs
composed by carbon and oxygen can be found in a binary with another com-
panion star. The white dwarf can accrete enough matter from the companion
to reach the Chandrasekhar mass and then the collapse continues. Due to its
composition, the compression and heating lead to thermonuclear explosion of
the white dwarf, leaving nothing behind except the companion star [4].
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Type I supernovae have been recently proposed to study the curvature of the
universe using them as standard candles [8]. Surveying the sky and considering
supernovae with redshifts from 0.2 to 1.0 allows to study non-linear regions of the
Hubble flow. Hence, this can be used to discern if the universe is geometrically
open or closed and whether is accelerating or not. The results indicate that the
universe expands forever and it seems to be accelerating. The acceleration in the
framework of the inflationary cosmological model implies a non-zero cosmological
constant. However, there are some open questions that have to be considered
before these results can be considered as definitive.

Pulsars were first discovered in 1967 [9] as radio sources. Pulsar radio emission
shows a uniform series of pulses, spaced with great precision at periods between
few milliseconds and several seconds. Some pulsars have been detected by optical,
X-ray and gamma-ray telescopes. Pulsars are weak radio sources. This means
that the coherent addition of many pulses is required in order to produce an
integrated profile. Although the individual pulses vary from pulse to pulse, the
integrated profile is very stable. The pulsars were soon identified as rotating
magnetized neutron stars [10]. After the discovery of neutron by Chadwick in
1932, Landau predicted the existence of neutron stars and Baade and Zwicky
[11] suggested that neutron stars may be formed in supernovae explosions.

Radio pulsars are rapidly rotating magnetized neutron stars with periods P
in the range of milliseconds to seconds [12]. They lose rotational energy due to
the spinning down of the magnetic torque with period derivatives Ṗ of order
of 10−12 - 10−6. The magnetic field induced by the rotation spin down and the
cyclotron absorption lines found in the X-ray spectra is of the order of 1011-
1013 G. The pulsar age can be estimated by P/2Ṗ . Pulsars are observed to
“glitch”, to suddenly spin up with a relative period change in the range from
10−8 to 10−6. In post-glitch relaxation most of the period increase decays. The
glitches suggest that the neutron stars are composed by a solid crust containing
superfluid neutrons.

A subclass of radio pulsars are the millisecond pulsars with periods ranging
from a few milliseconds to hundreds of milliseconds. The period derivatives are
small, indicating small magnetic fields, 108 to 1010 G. Most of them are in
binaries. This suggests that they are old pulsars spun up by accretion from a
companion star. Some of them have a white dwarf or neutron star companion.
Double neutron star binaries are of special interest. The first one PSR 1913+16
was found by Hulse and Taylor [13]. Pulsar timing observations allow to calculate
many parameters of the system including orbital period and period derivative,
both masses, orbital distance and inclination. In these binaries general relativity
can be tested accurately measuring the inward spiralling due to the emission of
gravitational radiation.

Some pulsars also emit in X-rays wavelengths. These are X-ray pulsars and X-
ray bursters. Around two hundred X-ray pulsars and bursters have been detected.
The X-ray emission is due to the accretion of mass to the neutron star from
a companion. X-ray pulses are thought to be due to strong accretion on the
magnetic poles. X-ray bursts are due to slow accretion over the neutron star
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surface. After accumulating hydrogen on the surface, a thermonuclear explosion
happens and a X-ray burst is observed, lasting for a few seconds. It is also
possible to find X-ray bursters, as the low mass X-ray burster XTE J1808-369,
with X-ray pulsations.

We have two different classes of X-ray binaries: the low mass X-ray binaries
(LMXRB), where the companion mass is of the order of the solar mass, and
the high mass X-ray binaries (HMXRB), where the companion is around 10
solar masses. For LMXRB the X-ray emission is produced through Roche-lobe
overflow (Roche-lobe is the location between the two stars in a binary where
the gravitational pull of the two stars is equal in modulus and with opposite
direction). The angular momentum of the accreting matter tends to form a dif-
ferentially rotating disk around the neutron star (also we can have LMXRB with
a white dwarf or a black hole as the compact component). The material in the
disk, spiralling to the compact object, heats up and emits X-rays. For HMXRB
the massive companion of the neutron star (also a black hole can be found in
HMXRB as the compact object. The prototype is Cyg X1) emits a stellar wind.
The compact companion captures part of the emitted matter emitting X-rays.

There are also the so called anomalous X-ray pulsars, corresponding to slowly
rotating, P = 10 s, but very rapidly spinning down due to a huge magnetic field
of the order of 1014 G. Sometimes they are called magnetars [14].

In some low mass X-ray binaries the pulsation seems to be unstable exhibiting
the so called quasi-periodic oscillations (QPO) [15]. These QPOs seem to arise
from the interaction of the neutron star with the accretion disk, or from the
instabilities in the captured material caused by X-ray emission.

Quasi-stellar objects or quasars belong to a class of galaxies named active
galactic nuclei (AGN)[16]. This name is due to the large amount of energy emit-
ted from their nuclei. Some general features of this class of galaxies are non
thermal spectra, high luminosity in a non-optical region of the spectrum (radio,
UV,...), strong emission lines, rapid variability. Some of them emit radio jets.
It is interesting to note that some of these features are also found in normal
galaxies but at lower luminosity levels.

This class of galaxies includes: Seyfert galaxies: spiral galaxies with bright
starlike nuclei, strong broad emission lines implying velocities of thousand of
km/s. There are two types. Type I which have very broad hydrogen emission
lines and Type II, with narrower emission lines. They have also compact radio
sources in their nuclei.

Radio galaxies: elliptical galaxies which have a powerful compact radio source
in their center and usually also radio jets.

Blazars: they are objects with strong non-thermal radiation, no emission lines
and a variability representing a large percentage of their total luminosity. They
are also very rapid. It seems that blazars are radio galaxies which we are looking
at right along the jet.

Quasars: They are unresolved points of light. In their spectrum there is a
continuous part of the type of the synchrotron emission. There are also broad
strong emission lines. They exhibit high variability in their total luminosity, with
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periods ranging from day to weeks or even years. Then we have an emission region
of a few parsecs, emitting 1013 times the luminosity of the sun. Radio Quasars
show a compact radio source and an extended radio synchrotron emission in
the form of oppositely directed radio jets of megaparsecs extension. These jets
terminate in what is called radio lobes, regions of diffuse radio emission with a
final shock wave.

The only possible explanation for all these features is the release of gravita-
tional energy by matter falling towards a black hole. These black holes need to be
very massive, from 106 to 109 solar masses, to produce the luminosities observed
in quasars. The falling of matter to the supermassive black hole takes place at
an accretion disk. A good example of accretion disk can be found in NGC 4258.
The radiation generated at its nucleus excites water molecules which produce
stimulated emission of radio waves. These water masers reveal a resolved disk
orbiting a 43 million solar mass black hole [17]. How the accretion produces the
observed jets, or how the collimation is obtained is a matter of very interesting
debates. Other evidence of a supermassive black hole can be found in the nearby
AGN MCG-6-30-15. The emission line due to iron in the X-ray spectrum of the
galaxy is extremely broad and skewed. This is due to relativistic effects only
expected near the event horizon of a supermassive black hole [18].

An important observation related with quasars is that their number density
has a peak when the universe was 2.5 109 years old and decreases constantly
ever since. Simply many of the quasars disappear at lower redshifts. Therefore
we arrive at the conclusion that the local universe is filled with supermassive
black holes that have exhausted their energy supply. The evidences suggest that
every galaxy has one of these supermassive black hole in its center. One of the
most remarkable cases is our own galaxy. The Milky Way has a powerful radio
source at its center SgrA*, with a size of the order of 3 109 km across. Monitoring
the motion of nearby stars, the effects of a supermassive black hole of 3 106 solar
masses are revealed [19]. A very interesting tool to measure the mass of a black
hole is the stellar velocity dispersion, which is just an indicator of the typical
velocity of the stars moving through a given point [20].

Other important phenomenon is galactic merging. In this situation the su-
permassive black holes at the center of the two galaxies will form a binary su-
permassive black hole of about one light year across. This could explain some
effects observed in active galaxies. Some galaxies emit radio jets that twist sym-
metrically on either side of the nucleus, which could correspond to the precession
of the spinning black hole that produces the jets. Also some outbursts observed
in quasars could be interpreted as produced by a small supermassive black hole
passing through the accretion disk of a larger one.

Observations in hard X-rays and radio wavelengths revealed the existence of
stellar sources of relativistic jets denoted by the name of “microquasars” [21].
These are stellar mass black holes that mimic the phenomena seen in quasars.
The microquasars combine accreting black holes, identified by the production
of hard X-rays and gamma-rays from the surrounding accretion disk, and rel-
ativistic jets of particles detected by synchrotron emission. Comparing the mi-
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croquasars with AGN we have that in microquasars the black hole has only
a few solar masses instead of several million solar masses, the accretion disk
has thermal temperatures of several million degrees instead of several thousand
degrees and the particles ejected can travel distances of light years, instead of
several million light years. Simple scaling laws are found in the physics of flows
around black holes suggesting unity in the physics of accreting black holes over
an enormous range of scales [22].

Gamma-ray bursts (GRB) are brief pulses of gamma-rays lasting for tens of
seconds. They are detected about once a day. The current interpretation of this
radiation is in terms of the so called fireball shock model and the blast wave
model following the afterglow. A tremendous amount of energy is released in a
very short time in a very small region and then it expands in a highly relativistic
outflow, which undergoes both internal shocks producing gamma-rays, and later
develops a blast wave and reverse shock, as it decelerates by interaction with
the external medium. Several progenitors have been proposed for the GRB,
hypernovae or collapsars, merging of two neutron stars or a neutron star and
a black hole, accretion-induced collapse, . . . all of them lead to a central black
hole and a temporary torus of matter around it [23].

3 Some Relativistic Astrophysics Basics

In this section we will describe some theoretical basics to complement the fol-
lowing chapters.

3.1 Black Holes

The origin of the concept of black hole is usually dated back to 1795. In this
year Pierre Simon de Laplace [24] combined both corpuscular theory of light and
theory of gravity to reach the following conclusion. If a star were so dense that
the velocity of escape, vesc, from its surface were as large as that of light, c, not
even the “photons” would be able to leave the star and this would disappear
from our sight. A simple undergraduate calculation shows that the mass of the
star, M , and its radius, R, are related by

vesc =

√
2
GM

R
= c .

This classical result is quite surprising since it coincides with the radius of
the horizon of a black hole.

The relativistic formulation of the black hole had to wait longer than a cen-
tury to Karl Schwarzschild’s derivation of the metric for the static and spherically
symmetric solution of Einstein’s vacuum field equations [25],

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2) ,
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which may be interpreted as the gravitational field of a point mass,M , or as the
exterior vacuum field of a spherically symmetric star.

It is taken to be the first exact solution of General Relativity, since it was
published in 1916, just a few months after Einstein’s seminal paper. At that
time Schwarzschild was a soldier in Russia during the Great War and died soon
after his return to Germany and after finishing his most reknowned contribution
to Physics. In a subsequent paper [26] he produced the metric for a spherically
symmetric incompressible perfect fluid, thereby completing the first and simplest
model for a star.

Schwarzschild’s spacetime shows some intriguing features. First of all, rel-
ativity does not remove the singularity of its classical analogue, the Coulomb
potential, restricting the applicability of the theory. On the contrary, quantum
mechanics did get rid of the singularity of the hydrogen atom, so one would
expect that a quantum theory of gravity would solve the problem. We are far
from that anyway.

Second, as Birkhoff stated [27], staticity is not needed to derive Schwarz-
schild’s solution, since it arises naturally from spherical symmetry. Therefore,
Schwarzschild’s metric is in some sense unique.

The first generalization of this metric did not wait long. A few months later
a point charge e was added to Schwarzschild’s spacetime [28]. Although just an
additional e/r2 term was needed, the spacetime acquired a richer structure. It
took a little longer, nearly half a century, till Kerr included rotation [29]. The
complete black hole solution, with mass, charge and angular momentum, was
obtained in 1965 [30]. On the contrary, the Kerr metric has not been useful as
an exterior vacuum field for a star. It has been used just as a black hole, since it
has not been possible to match it to any interior perfect fluid to provide a whole
model for a rotating star.

Black hole singularities have been an interesting issue for research. There
is not just a region r = 0 out of the spacetime where the fields diverge, but
at r = 2m we meet a coordinate singularity. It is not a true singularity since
observers travelling on geodesics do not find the end of their journey there.
In fact, it can be removed by suitable changes of coordinates, like Eddington-
Finkelstein [31].

However, the surface at r = 2m, the horizon of the black hole, though it is
not singular, it does act as a one-way membrane. Geodesics starting inside the
horizon cannot cross it and finally meet their fate at the singularity. Therefore the
horizon splits the spacetime into two regions that are causally disconnected, that
is, the interior region cannot influence the exterior. There is a further extension
of the Schwarzschild spacetime due to Kruskal and Szekeres [32] that encloses
two exterior regions and that is maximal in the sense that it cannot be extended.

The charged Reissner-Nordstrøm black hole exhibits new features, although
its metric is rather similar to Schwarzschild’s. The horizon splits into two sur-
faces r± = m ±

√
m2 − e2 for lightly charged black holes, |e| < m. The main

difference with Schwarzschild is that the singularity can be avoided by infalling
observers. In fact, Reissner-Nordstrøm’s black hole can be also extended to in-
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clude two exterior regions and constitutes a “wormhole”, a sort of traversable
throat between two asymptotically flat regions.

On crossing the first horizon, r+, from the outer region, the observers appear
infinitely redshifted to those that remain in the “safe” region. In fact, they would
never see them cross at all, since that last ray of light would not leave the black
hole. That is the reason why black holes have been also named “frozen stars”.
The name black hole was suggested by Wheeler depicting the fact that not even
light can overcome its gravitational field.

The surface r = r− is called the Cauchy horizon since it is the boundary of
the region of the spacetime where evolution can be predicted from initial data
on a Cauchy hypersurface. An observer crossing the Cauchy horizon would see
neighbouring objects infinitely blueshifted and the whole history of the outer
region in a finite time. Since this behaviour does not seem physically sensible,
it has been argued that the Cauchy horizon must be unstable under small per-
turbations and that it would develop a singularity. This has been studied in
detail from the early 90s. It has been confirmed that a singularity appears [33],
for instance, when pulses of radiation are added to the spacetime. On the other
hand, this singularity is null and weak [34] in the sense that tidal distortion is
finite and would not prevent an observer from crossing the event horizon.

For |e| > m (|a| > m for Kerr’s spacetime) no horizon hides the singular-
ity from observers in the outer region and the spacetime bears what is called a
“naked singularity”. It has been postulated that, although mathematically ad-
missible, these spacetimes must be rejected in physical evolution, that is, for
realistic physical configurations naked singularities would not come out from
gravitational collapse or would be unstable under small perturbations, which
would finally develop a black hole. This is the “cosmic censorship hypothesis”.
Numerical results are controversial on this issue.

A counterexample for the cosmic censorship hypothesis is namely the Chop-
tuik spacetime [35], which describes numerically the collapse a scalar field. As
one would expect, two different situations arise. Either the waves disperse or a
black hole forms. What it was not to be expected is that the description were
so simple. The mass of the forming black hole depends on a power of a pa-
rameter, which is the same for every set of initial data (universality). For the
critical value of the parameter, a zero-mass naked singularity is formed, but it is
unstable. First results showed that the critical exponent could be universal for
other sorts of collapsing material. But Maison [36] found out that the exponents
were different for collapsing perfect fluids. Critical collapse will be the topic of
Gundlach’s chapter.

The rotating Kerr black hole also incorporates new features that did not
show up in static ones. Horizons subsist for slowly rotating black holes, |a| < m,
at r± = m±

√
m2 − a2 and the singularity is naked for |a| > m. In addition to

them, a new exotic region appears, the ergosphere, which is limited by r+ and
the stationary limit surface, r = m±

√
m2 − a2 cos2 θ. Inside the ergosphere an

observer cannot remain at rest with respect to infinity because the generator of
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the stationary symmetry is not timelike in this region. Penrose suggested that
this fact could be used to draw energy from a rotating black hole [37].

The fact that the rotating charged blackhole is solely determined by its mass,
angular momentum and electric charge suggests that every other degree of free-
dom of matter is wiped out during the gravitational collapse. This lead Israel,
Penrose and Wheeler to postulate the “no-hair conjecture”, which claims that a
black hole with a horizon with spherical topology is characterized just by those
three values. The proof of this conjecture is complex and requires additional
technical assumptions. It has required thirty years to be proven [38]. However, if
one allows other exotic fields in the spacetime, new “hair” sources may appear.
For instance, Yang-Mills black holes have non-abelian hair [39]. This issue is of
course related to uniqueness of black holes.

Another intriguing issue is the entropy of a black hole. Since a black hole in
equilibrium is described by a reduced set of variables, it could be considered as
a sort of statistical system. Comparison with thermodynamics lead Bekenstein
[40] to suggest that the area of the horizon could be assigned to an entropy,
since it cannot decrease for matter with non-negative density, as Hawking had
shown [41]. On the other hand, surface gravity, i.e. gravity at the horizon, could
be related to a sort of temperature, since it takes the same value at every point
of the horizon. The four laws of black hole dynamics appeared in [42]. This was
the beginning of black hole dynamics, which is the subject of Werner Israel’s
chapter. There has been an intense work to establish the origin of this entropy,
from theory of information to quantum theory. String theory is also considered
a candidate to solve the problem.

If a black hole is to have a temperature different from zero [43], it should
radiate and that this emission could be in principle detected. This was pointed
out by Hawking. Therefore black holes no longer can be considered eternal. In
fact, they radiate most violently the greater their mass is.

3.2 Numerical Relativity

One possible approach to study the phenomena found in relativistic astrophysics
is through numerical methods. Usually this requires accurate, large scale, three-
dimensional numerical simulations. The dynamics of a system is described by a
coupled system of time-dependent partial differential equations, including Ein-
stein gravitational equations and matter equations (Maxwell equations, mag-
neto-hydrodynamical equations,...) leading usually to a non-linear hyperbolic
system of equations. If we are interested in stationary solutions the system of
equations transforms to a non-linear elliptic one.

Time-dependent dynamical problems draw the attention of many groups be-
cause of the importance they have for gravitational radiation.

Most approaches for general relativistic equations use spacelike foliations of
the spacetime, within a 3+1 formulation (ADM). In ADM formulation spacetime
is foliated into a family of non-intersecting spacelike hypersurfaces. The Einstein
equations split into evolution equations for the three metric and the extrinsic
curvature and constraint equations that must be satisfied at every time slice. On
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the other hand, the general covariant formulations, not attached to the spacetime
foliation, allow techniques for fluid dynamics to be applied straightforwardly.

Numerical schemes make use mainly of finite differences, providing solutions
of the discretized version of the original system of partial differential equations.
Schemes using artificial viscosity are based in the idea of modifying the equa-
tions by introducing some terms providing artificial viscosity, such that the
spurious oscillations near the discontinuities be damped. On the other hand,
shock-capturing methods use the explicit knowledge of the characteristic fields
of the equations and the corresponding eigenvectors to integrate the equations
by means of Riemann solvers, computing at every interface of the numerical grid
the solution of the simplest initial value problem with discontinuous initial data
(Riemann problem). The main advantage of these methods is that the physical
discontinuities (shock waves,...) are treated adequately.

Other techniques are used, for instance, smoothed particle hydrodynamics,
where extended Lagrangian particles replace the continuum hydrodynamical
variables. The extent of the particles is determined by the length scale con-
tained in a smoothing function. Other approach is the spectral method which
transforms the partial differential equations into a system of ordinary differential
equations by expanding the solution in a series on a complete basis. The spec-
tral methods are well suited for elliptic and parabolic problems. For hyperbolic
systems they provide good results if there are no discontinuities in the solution.

3.3 Stability and Oscillations of Compact Objects

Practically every stellar object oscillates and although there is great difficulty in
observing such oscillations, there are already results for various types of stars. For
instance, observations of solar oscillation, helioseismology, have revealed a large
amount of information on the Sun [44]. For normal main sequence stars the study
of these oscillations can be done with a Newtonian theory and will have a small
relevance for gravitational radiation. On the other hand, the oscillations of very
compact objects (neutron stars and black holes), produced mainly during the
formation stage, are of the main importance for gravitational wave astronomy,
because they could be detected by the gravitational detectors which are under
construction. These oscillations have to be studied in a relativistic theory.

In general relativity, due to gravitational radiation, there are no normal mode
oscillations but instead we have “quasi-normal” modes (QNM). The frequencies
become complex. The real part represents the actual frequency of the oscillation
and the imaginary part corresponds to the damping produced by the emission
of gravitational waves. The quasi-normal modes appear as perturbations of the
spacetimes describing neutron stars or black holes.

The study of black hole perturbations began with the work of Regge and
Wheeler [45] in the fifties and was followed by Zerilli [46]. It was mainly con-
centrated on the stability of a black hole under small perturbations. The devel-
opment of relativistic star perturbations was initiated in the sixties by Thorne
group [47]. They were interested in extending the known properties of Newto-
nian oscillation theory to general relativity, as well as to estimate the frequencies
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and energy radiated away as gravitational waves. Vishveshwara was the first in
defining QNM [48], which latter have been found in several circumstances: par-
ticles falling into Schwarzschild and Kerr black holes, the collapse of a star to
form a black hole, . . .

3.4 Gravitational Radiation and Post-Newtonian Approximation

In post-Newtonian approximation it is assumed weak gravity, slow motion of the
matter and small stresses and internal energies in order to make a simultaneous
expansion in small parameters characterizing these quantities. Such a weak-field
slow-motion expansion yields at zeroth order the empty spacetime and at first
order, the Newtonian approximation. Further orders provide post-Newtonian
corrections for our problem. This approach can be used, for instance, in our
solar system for different metric theories.

Gravitational radiation, i.e. waves of curvature in the spacetime, can be of
main importance to study many relativistic astrophysical phenomena. It is pro-
duced by dynamical time-dependent changes of the spacetime curvature in as-
trophysical systems. It may contribute to measure spacetime geometry around
black holes, study highly nonlinear vibrations of curved spacetime in black hole
collisions, check the equation of state and the structure of neutron stars, the
inner part of the accretion disk and many other effects. Great effort has been
devoted to develop gravitational wave detectors and to calculate theoretically
the wave form for different astrophysical processes.
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Abstract. This chapter reviews the conceptual developments on black hole thermo-
dynamics and the attempts to determine the origin of black hole entropy in terms of
their horizon area. The brick wall model and an operational approach are discussed. An
attempt to understand at the microlevel how the quantum black hole acquires its ther-
mal properties is included. The chapter concludes with some remarks on the extension
of these techniques to describing the dynamical process of black hole evaporation.

1 Introduction: Black Holes 1930-75

Just over 70 years ago, Chandrasekhar and Landau independently discovered
that there is an upper limit to the mass of a cold body in equilibrium. A cooling
star heavier than this faces a crisis. A moment arrives when pressure support
fails: the cooling material cracks and crumbles under its own weight and goes
quickly into free fall.

What happens next in an exactly spherical implosion was described by Op-
penheimer and Snyder in 1939. The star disappears within its gravitational ra-
dius and loses all ability to causally influence the outside, leaving behind only
the deformation which its gravity had imprinted on the outer vacuum – the
Schwarzschild geometry.

However, this idealized picture was expected to bear no more than a cursory
resemblance to a real collapse, whose terminal state was imagined to be a forbid-
dingly complex object, bearing the imprint, probably in greatly magnified form,
of the magnetic field, asymmetries and other peculiarities of the original star.
During the late 1960s it gradually became clear that this is not the case. The
picture that emerged instead for the endstate was of a very simple object, called
a “black hole” by John Wheeler. This can be visualized as an elemental, self-
sustaining gravitational field which has severed all causal connection with the
material source that created it and settled, like a soap bubble, into the simplest
configuration consistent with the external constraints. Only three characteris-
tics of the collapsing star survive in this final state: mass, angular momentum
and (in principle) charge. This circumstance, summed up by Wheeler’s graphic
phrase “A black hole has no hair”, means that the gravitational field of a col-
lapsed object is known with greater precision than anything else in astrophysics,
and provides a firm foundation for modelling the (inevitably very complicated)
magnetohydrodynamics of accretion and jet formation in active galactic nuclei
and X-ray binaries containing black holes.
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The no-hair theorems established the idea of the black hole as an object with
many internal degrees of freedom whose external configuration is completely
specified by just a few parameters. In this respect, the black hole resembles a
thermodynamical system. Work by Christodoulou and by Bardeen, Carter and
Hawking [1] in the early 1970s showed that this similarity goes much further and
that there is, in fact, a detailed formal similarity between the laws of black hole
mechanics and the laws of thermodynamics.

A pivotal role in this analogy is played by the second law of black hole
mechanics, which arises from the character of the black hole’s boundary (called
the event horizon) as a one-way membrane for causal effects. The black hole
can absorb matter and radiation but (at least classically) emits nothing, so one
expects it to grow in some sense. However it is not correct to say that the
mass of a black hole can never decrease, because there are mechanisms that can
extract energy from charged or rotating black holes – for instance the process
of discharging a charged hole (see (1) below), or the Penrose process of mining
energy from the “ergosphere” of a spinning hole. Christodoulou and, in more
generality, Hawking showed that the nondecreasing quantity is the area.

More precisely, Hawking’s 1971 area theorem states that the area of the future
event horizon can never decrease provided the stress-energy tensor of matter
and fields satisfies the condition Tμν lμlν ≥ 0 on the horizon. (The history of
the horizon is a lightlike 3-space; lμ points along the unique lightlike direction
tangent to this space.) This condition requires that material accreted by the hole
should have nonnegative energy density, at least while crossing the horizon. It is,
of course, satisfied by “ordinary”, i.e., classical materials. But it can be violated
by the renormalized stress-energy tensor of quantum fields in a curved spacetime.
Thus, the classical statement of the second law – “the area of the event horizon
can never decrease” – must be expected to break down when quantum effects
are taken into account. But we shall see that a suitably generalized form of the
second law does remain valid.

As a simple illustration of the area law, consider the process of adding an
infinitesimal charge dQ to a spherical hole of mass M and charge Q. In this
process, the mass of the black hole must increase by at least the work done
in pushing the charge dQ as far as the horizon r = r0 (after which it has no
alternative but to drop of its own accord:

dM =
Q

r0
dQ+ dEdiss . (1)

The term dEdiss is nonnegative, and represents the irreversible inward trans-
fer of energy across the horizon associated with the rest-mass and kinetic energy
of the accreted charge and the accreted portion of any gravitational or electro-
magnetic waves which may have been generated in the process.

An uncharged spherical hole of mass M has radius r0 = 2GM/c2. For a
charged hole this generalizes to

r0 = 2
(
M − 1

2
Q2

r0

)
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in relativistic units G = c = 1. (The subtracted term is the electrostatic field
energy excluded from a sphere of radius r0.) The mass increment dM in (1)
can have either sign, depending on the sign of the accreted charge. However,
re-expressing (1) in the form

κ0

8π
dA = dM − Q

r0
dQ = dEdiss ≥ 0 (2)

shows that the area A = 4πr20 always increases in the process. Here,

κ0 =
M −Q2/r0

r20

is called the “surface gravity” of the hole, borrowing from a formal Newtonian
analogy.

The generalization of (2) to a quasi-stationary process which produces chan-
ges dQ, dJ in the charge and angular momentum of a spinning black hole reads
[1]

κ0

8π
dA = dM − Φ0dQ− ω0dJ ≥ 0 , (3)

and in this form includes both the first and the second laws of black hole me-
chanics. The three coefficients – the surface gravity κ0, the electrostatic potential
Φ0 and the angular velocity ω0 of the horizon – are necessarily constant over a
stationary horizon, even if the black hole is spinning and tidally deformed by
neighbouring masses. This is the content of the zeroth law. For comparison, re-
call the zeroth law of thermodynamics: the temperature and chemical potentials
have the same value everywhere for as system in thermodynamical equilibrium.

There is an obvious resemblance between (3) and the thermodynamical rela-
tion

TdS = dE + PdV −
∑
A

μAdNA (4)

with S nondecreasing for a closed system. This leads one to draw a formal
analogy between black hole area A and thermodynamic entropy S, and between
surface gravity κ0 and temperature T , and to interpret Φ0, ω0 as black hole
“chemical potentials”.

There is also a black hole analogue of the third law of thermodynamics in
its weaker (Nernst) form – the temperature of a system cannot be reduced to
absolute zero in a finite number of operations. This states that the surface gravity
cannot be reduced to zero in a finite (advanced) time in any interaction with
matter whose density is bounded and nonnegative [2]. (The stronger (Planck)
form of the third law – S = 0 when T = 0 – does not have a classical black hole
analogue. At the quantum level the situation is less clearcut, see Sect. 5)

The analogy between black hole mechanics and thermodynamics was at first
considered to be strictly formal. However, in 1972 Bekenstein suggested that it
should be taken seriously, and that the entropy of a black hole should be iden-
tified with its area (up to a universal constant factor). For a time this remained
a one-man minority view, since it was difficult to see how one could assign any
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temperature other than zero to an object which emits no radiation. These pre-
conceptions were overturned in 1974 when Hawking announced his discovery
that black holes do radiate by a quantum tunnelling process. His detailed calcu-
lation [3] showed that the energy spectrum of the emitted particles is thermal
and corresponds to a temperature

TH =
�

2π
κ0 . (5)

The parallel between (3) and (4) then suggests that an entropy

SBH =
1
4
A/� (6)

is in some sense associated with the hole. Exactly what this might mean will be
the focus of interest in the following pages.

A black hole which radiates freely into space will slowly evaporate and the
event horizon will shrink, violating the classical statement of the second law.
However, the decrease of black hole area (i.e., entropy) in the course of evap-
oration is more than compensated by the entropy of the emergent Hawking
radiation. In a quantum context, the second laws of black hole mechanics and
thermodynamics are subsumed and sublimated into a generalized second law : the
sum of the entropy of a black hole (as represented by its area) and the entropy
of its surroundings can never decrease.

About the same time as Hawking’s discovery, work by Fulling, Davies and Un-
ruh [4] showed that thermal effects are also associated with uniform acceleration
in flat space. The ground state for an observer moving with uniform acceleration
a is different from the usual Minkowski vacuum, the difference being associated
with a characteristic “acceleration” or Unruh temperature

TU =
�

2π
a .

The accelerated observer “perceives” the Minkowski vacuum as a thermal
bath at temperature TU. What this really means is that his ground state is
depressed to negative energy density, so he views the Minkowski vacuum as ex-
cited (thermally) above his ground state. Unlike Hawking radiation, the Fulling-
Davies-Unruh thermal bath is not a source of gravity even in principle, and it
would be legitimate to take the view that it has no objective reality but, like
centrifugal force, merely provides a convenient alternative mode of description
for observations made in an accelerated frame. As such it can nevertheless shed
useful light on several aspects of black hole thermodynamics, as we shall see.

In familiar units, the temperature of an uncharged black hole of mass M is

TH ∼ 10−7
(
M

M�

)−1

K , (7)

where M� is the solar mass. This is quite negligible for astrophysical purposes
for a black hole formed in a stellar collapse. For a hypothetical black hole of
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mass 1015 g (about the mass of a mountain) the temperature reaches the more
impressive figure of 1011 K, but such a black hole is so tiny (about the size of a
proton) and its radiating surface so small, that it would take as long to evaporate
as the present age of the universe. In general the lifetime of a black hole of mass
M is

t ∼
(
M

M�

)3

(1064 yr) .

According to (7), the black hole gets warmer as it loses energy and contracts.
In this respect, it resembles a gaseous star – both have a negative specific heat. At
first, the hole radiates only massless particles – photons and neutrinos. Radiation
of electron-positron pairs begins once the temperature gets high enough (kT ∼ 1
Mev) for their creation. Baryons begin to emerge only when kT ∼ 1 Gev, i.e,
T ∼ 1013 K; by this stage the mass has been reduced to only 1013 g.

Black hole evaporation raises fundamental issues. Consider the evaporation
of a black hole formed by the collapse of a star of mass 5M� ∼ 1034 g. The
original star had a baryon number ∼ 1058. On the other hand, the evaporation
product can have a baryon number ∼ 1013/10−24 = 1037 at the very most, since
the hole radiates particle-antiparticle pairs. Thus, the possibility of black hole
evaporation provides a very indirect but compelling line of evidence, independent
of particle physics, that conservation of baryon number cannot be an absolute
law.

In relativistic units, Planck’s constant � is an area:

�
1/2 = lPl ≈ 10−33 cm

which makes explicit that SBH in (6) is a pure number, about 1078 for a 5M�
black hole. By contrast, the thermal entropy of the progenitor star was of the
order 1058 (roughly the number of particles in the star). This enormous disparity
makes it clear that SBH bears no necessary relation, except as a (liberal) pre-
sumed upper bound, to the thermal entropy of the material that went into its
formation.

What is the true nature of SBH? If it represents inaccessible information, is
this information only temporarily hidden, or is it permanently lost when the
black hole evaporates? If Hawking radiation is truly random, then at the quan-
tum level the collapse and subsequent evaporation of a body initially in a pure
state would involve the evolution of a pure state into a mixed state, which quan-
tum mechanics holds to be impossible. Various resolutions of this “information
loss” paradox have been proposed. Those which hold most favour today revolve
about the idea that the evaporation products contain subtle correlations which
preserve unitarity. Here, the focus will be on thermodynamical aspects, but later
sections will inevitably touch on this fundamental problem.
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2 The Mystery of Black Hole Entropy

You can pick anyone off the street and say “Einstein”. They will at once write
E = Mc2. But if you ask what this formula means, the response will be quite
different. At best, you may get some mumbling about “atomic bomb”.

It is sobering that after a quarter-century we are in a hardly better position
regarding the formula

SBH =
1
4
A/l2Pl , (8)

where, not to beg the question, I stipulate that “BH” stands for Bekenstein-
Hawking and not necessarily for Black Hole. By now, this formula has been
derived in so many ways and interpreted from so many angles that it has claims
to be the most proved and least understood formula in all of theoretical physics.
It is an entirely superficial result, in the literal sense that it refers solely to surface
properties. Whether it is also deeply profound – whether it hints at some as yet
undiscovered link between thermodynamics, gravity and the quantum world – is
a question on which the jury is still out.

In the early speculations of Wheeler and Bekenstein no distinction was made
between coarse – and fine – grained entropy; SBH was supposed to keep track of
the thermal entropy of objects thrown into the hole (Wheeler’s “teacup experi-
ment”). The generalized second law

Δ(SBH + Smat) ≥ 0

lends support to this interpretation. Nevertheless, as noted at the end of the
previous section, it is not possible simply to identify SBH with the thermal
entropy of the matter which collapsed to form and feed the hole.

The view that entropy is somehow created in the process of evaporation
also meets with difficulties. Black hole evaporation is very nearly – and can be
made exactly – reversible. One simply encloses the hole in a perfect reflecting
container, so that it comes into equilibrium with its own radiation, and then
allows the radiation to leak out a little at a time. This process is reversible and
cannot create entropy.

In 1977 Gibbons and Hawking [5] gave a statistical derivation of (7), using
analytic continuation to the Euclidean sector and imposing a Matsubara pe-
riod T−1

H on Euclidean time – i.e., they considered a black hole in equilibrium
with its own radiation at the Hawking temperature (Hartle-Hawking state). In
this approach, SBH appears already at zero-loop order, as a contribution to the
partition function

Z = e−W , W =
1
8π

∫ ∞
K dΣ (9)

from the boundary (extrinsic curvature) terms accompanying the Einstein-Hil-
bert action. (In (9), the surface integral is to be taken over the outer boundary
only. There is no inner boundary; the horizon appears as a regular point of the
Euclidean sector.) Unfortunately, this offers no clue to the dynamical origins of
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SBH; rather, it seems to suggest that the entropy is in some sense topological in
origin.

Interesting and suggestive, but still short of completely satisfying, are inter-
pretations which refer to the hole’s past or future history, or to ensembles of
histories; for instance, “SBH is the logarithm of the number of ways the hole
could have been made” [6], or which attempt to relate SBH to the entropy of the
evaporation products.

Ideally, it should be possible to regard SBH as a state function, defined at
each moment of time in terms of the dynamical degrees of freedom existing at
that moment. One also wants to understand how it comes to have the simple
universal form (7), independent of the hole’s internal structure and all details of
the microphysics.

Perhaps the most promising view is that SBH is entanglement entropy, associ-
ated with modes and correlations hidden from outside observers by the horizon
[7]. Tracing over the hidden modes yields a density matrix which looks ther-
mal. (If the black hole originates from a pure state, one could equally well trace
over the external modes, since they will be perfectly correlated with the hidden
internal modes.)

Remarkably, this yields an entropy proportional to area. Naively, the coef-
ficient of proportionality is infinite – this arises from the existence of modes of
arbitrarily high angular momentum close to the horizon – but reduces to the
right order of magnitude when one allows for quantum fluctuations, which will
prevent events closer to the horizon than about a Planck length lPl from being
seen on the outside.

A 1985 calculation by ’t Hooft [8] seems to be based, at least implicitly, on the
idea of entanglement. This treats the statistical thermodynamics of hot quantum
fields propagating on a Schwarzschild background. Divergences are controlled by
a “brick wall”, a reflecting spherical surface just outside the gravitational radius.
’t Hooft found, in addition to the expected volume-proportional terms describing
radiation inside a nearly flat, large cavity whose outer wall is at the Hawking
temperature, additional wall terms proportional to the area. These latter terms
diverge as α−2, where α is the proper altitude of the wall above the gravitational
radius. For a specific choice of α (which depends on the number of fields, etc.,
but is generally of order lPl) one is able to recover the Bekenstein-Hawking result
(8).

The brick wall model, discussed in more detail in Sect. 4, lends credence to
the – at first glance rather fanciful – notion that SBH is a property strongly
localized near the wall or horizon. Further support comes from an operational
approach described in Sect. 5: a massive thin shell in vacuum, slowly and re-
versibly compressed toward its gravitational radius, acquires a thermal entropy
equal to SBH in the limit. The focus of the next three sections is an attempt
to understand at the microlevel how the quantum black hole acquires its ther-
mal properties. Geometrically, this is rooted (at least for an eternal black hole)
in the two-sheeted structure of the extended (Kruskal) vacuum manifold. This
has close formal links to the twin Fock spaces in the thermofield dynamics of
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Takahashi and Umezawa. A special (“thermally entangled”) pure state on the
double Fock space yields a thermal density matrix when traced over the hidden
modes. We conclude with some remarks on the extension of these techniques to
describing the dynamical process of black hole evaporation.

3 Ground States for Stars and Black Holes

In a general curved spacetime there is no unique choice of time co-ordinate.
Different choices lead to different definitions of positive-frequency modes and
different ground states. Much of the following discussion will be concerned with
these different states and the Bogoliubov transformations which mediate between
them. In this section we recall the most important of these states and their
properties.

In a static spacetime with Killing parameter t, the Boulware state |0〉B is the
one empty of modes positive-frequency in t, i.e, static observers “see” no parti-
cles in this state. In an asymptotically flat space, |0〉B is indistinguishable from
the Minkowski vacuum near infinity. Further down, vacuum polarization due to
curvature induces a nonvanishing stress-energy. The energy density is generally
negative and, if a horizon were present, would actually diverge there. Hence the
Boulware state would be unstable in a black hole spacetime; it is actually the
zero-temperature ground state appropriate to the space in and around a static
star.

The diverging terms in the Boulware stress-energy can be visualized as ingo-
ing and outgoing radial lightlike streams of negative energy infinitely blueshifted
at past and future horizons respectively. These streams can be neutralized, and
the divergence mended, by introducing compensating positive-energy fluxes in-
cident from and to infinity. The resulting state, the Hartle-Hawking state |0〉H,
represents a black hole in thermal equilibrium with its own radiation in an enclo-
sure. More exactly, |0〉H is the state empty of modes positive-frequency in Kruskal
time; free-falling observers at the horizon “see” no particles in this state.

For a black hole formed by collapse of a star, the past horizon is absent and
only a positive outflux is needed to mend the divergence on the future horizon.
This yields the Unruh state |0〉U, representing a black hole radiating freely into
space. Formally, |0〉U is empty of modes positive-frequency in ordinary advanced
time v and Kruskal retarded time U , in the (analytically extended) black hole
vacuum spacetime.

(The above definitions will serve for static geometries, but need careful recon-
sideration [9] for spacetimes with rotation, where the possibility of ergospheres,
ambiguities in the definition of positive-frequency and gravitational analogues of
the Klein paradox complicate the issues. These complications are not considered
here.)

Calculation of the expectation values of the stress-energy operator for these
states is generally difficult and closed-form expressions unavailable. In (1+1)-
dimensions, however, the three independent components of 〈T b

a 〉 are fully deter-
mined just by the conservation laws T b

a ;b = 0, the boundary conditions appropri-
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ate for this state, and the trace “anomaly” T a
a , a state-independent c-number.

For a massless scalar field,

T a
a =

�

24π
R , (10)

where R is the two-dimensional curvature scalar. For illustrative purposes and
later reference, it will be useful to record the explicit forms of 〈Tab〉 for the
different states of interest.

In conformal gauge

ds2 = −e2λ(u,v)du dv = e2λ(z,t)(dz2 − dt2) , (11)

the curvature is
R = −2�λ = 8 e−2λ∂u∂vλ . (12)

The most general conserved symmetric tensor Tab with trace (10) has the form

Tab = Θab[λ] + F out(u)u,au,b + F in(v)v,av,b (13)

where the first term is defined by

Θab[λ] =
�

12π

{
λ;ab + λ,aλ,b − gab

(
�λ+

1
2
(∇λ)2

)}
(14)

for any metric function λ(u, v) in (11), and the functions F in, F out are arbitrary.
In (11), the lightlike co-ordinates u, v can be replaced by arbitrary functions

of themselves. The resulting arbitrariness in λ and Θab in (14) is precisely re-
flected in the arbitrariness of F in and F out in (13).

For definitiness, let us suppose that z, t are asymptotically Lorentzian co-
ordinates in an asymptotically flat spacetime, so that λ→ 0 when z → +∞. If a
horizon is present, it would be “off the map” in this asymptotically Lorentzian
conformal gauge: it is characterized by z → −∞, λ→ −∞. This can be remedied
by transforming to Kruskal coordinates.

To introduce these co-ordinates we must first define the “surface gravities”
of the two sheets of the (in general, nonstatic) horizon. It follows directly from
the lightlike character of u and v that their second covariant derivatives must
have the form

u;ab = −κout(u, v)u,au,b ; v;ab = −κin(u, v) v,av,b . (15)

It is easy to verify

κout(u, v) = −2 ∂uλ , κin(u, v) = 2 ∂vλ ,

κin − κout = 2 ∂tλ(z, t) . (16)

(In a static spacetime, κin = κout = 2λ′(z) would give the redshifted force –
calibrated for an observer at infinity – needed to hold a unit test mass stationary.
In this sense κin, κout are generalized surface gravities.)
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The co-ordinates u, v are not rectilinear since their second covariant deriva-
tives do not vanish in general. However, it is possible to introduce lightlike co-
ordinates U(u), V (v) which are locally rectilinear in the sense that their second
covariant derivatives vanish along specified curves – in the case of interest to us,
the past and future sheets of the horizon, v = −∞ and u = +∞ respectively.
We define these “Kruskal co-ordinates” by

[lnU ′(u)]′ = κout
0 (u) ≡ κout(u, v = −∞) , (17a)

[lnV ′(v)]′ = κin
0 (v) ≡ κin(u = +∞, v) . (17b)

It then follows from (15) that U, V are locally rectilinear on the horizon:

U;ab|v=−∞ = V;ab|u=∞ = 0 . (18)

(Obviously the formulas (15)-(18) could be carried over without essential change
to nonstatic spherical black holes in (3+1)-dimensions.)

In Kruskal co-ordinates, metric (11) becomes

ds2 = −e2Λ(U,V )dU dV . (19)

where now the function

Λ = λ− 1
2

ln{U ′(u)V ′(v)} (20)

is regular at the horizon if κin
0 , κout

0 are nonzero, as we shall assume. From (20)
and definition (14),

Θab [Λ] = Θab [λ] +Hout(u)u,au,b +H in(v) v,av,b , (21)

where

Hout(u) =
�

48π

{
(κout

0 )2 − 1
2
R(u, v = −∞)

}
;

H in(v) =
�

48π

{
(κin

0 )2 − 1
2
R(u = +∞, v)

}
. (22)

Expectation values 〈Tab〉 in the various ground states of the scalar-field stress-
energy must all take the general form (13), with the adjustable fluxes chosen to
fit the appropriate boundary conditions. For the Boulware state – asymptotically
vacuum, i.e., 〈Tab〉B → 0 at infinity – we must choose F in = F out = 0. Hence

〈Tab〉B = Θab[λ] . (23)

The Boulware stress-energy is singular at the horizon, since λ→ −∞ there.
By contrast, in the Hartle-Hawking state the stress-energy is bounded on

both sheets of the horizon. Since this is also true of Λ, this boundary condition
is satisfied by

〈Tab〉H = Θab[Λ] . (24)
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At the horizon, this would be the stress-energy measured by a free-falling ob-
server, using the locally Lorentzian co-ordinates to define his notion of positive
frequency.

From (21),

〈Tab〉H = 〈Tab〉B +Hout(u)u,au,b +H in(v) v,av,b . (25)

Thus, in contrast to the asymptotic vacuum of the Boulware state, the Hartle-
Hawking state bathes the space around the hole with cross-streams of radiation
at (in general, variable and different) effective temperatures

Tin =
�

2π
κ

(0)
in (v) , Tout =

�

2π
κ

(0)
out(u) . (26)

For a static geometry (the case of physical interest here for this state), the
radiation bath would be in thermal equilibrium with the hole at the Hawking
temperature, and with asymptotic energy density (π/6�)T 2

H, the expected value
for scalar radiation in (1 + 1)-dimensions.

The Unruh state is vacuous at past lightlike infinity I −. It therefore lacks the
influx term in (13) which makes the Hartle-Hawking stress-energy (25) regular
at the past horizon:

〈Tab〉U = 〈Tab〉B +Hout(u)u,au,b . (27)

At future lightlike infinity I +, the second term is all that survives; it represents
the thermal outflow characteristic of an evaporating black hole. There is an
accompanying inflow of negative energy through the future horizon:

〈Tab〉U = 〈Tab〉H −H in(v) v,av,b . (28)

If the background geometry is static, these results can be made explicit and
very simple. It is convenient to write the metric in the form

ds2 =
dr2

f(r)
− f(r)e2ψ(r) dt2 . (29)

A stationary observer in this geometry has redshifted outward acceleration

κ(r) =
√−gtt × (proper acceleration) =

(
1
2
f ′ + fψ′

)
eψ . (30)

We consider a static medium with pressure P = T rr and energy density
� = −T tt . The radial component of the conservation law T b

a ;b = 0 reduces to

dP
dr

= −(�+ P )
κ

f
, equivalently

dP
�+ P

= −d ln
√−gtt . (31)

If this “fluid” has entropy density s(r), inverse local temperature β(r) = T−1

and zero chemical potential, the local Gibbs-Duhem relations which define these
quantities are

s = β(�+ P ) , ds = β d� , (32)
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from which follows
dP
�+ P

= −dβ
β
. (33)

From equation (31) and (33),

T
√−gtt = const. , (34)

which is the well-known law of Tolman (valid in this form for an arbitrary static
spacetime) for the variation of temperature in a gravitating fluid in thermal
equilibrium: the nether regions are hotter.

The above results apply to any static medium. If the medium is a massless
scalar field, and T b

a is the expectation value of its stress energy, then the trace
anomaly

T a
a =

�

24π
R , R = −2 eψ

dκ
dr
, (35)

determines T b
a up to a constant of integration, to be fixed by boundary condi-

tions. Using (35), i.e.,

� = P − �

24π
R , (36)

to eliminate � from (31) and integrating yields

f e2ψP = − �

24π
{κ2(r) + const.} . (37)

For the Boulware state in an asymptotically flat space, the boundary condi-
tion P → 0 at infinity requires the constant to vanish:

PB = − �

24π
κ2(r)
fe2ψ . (38)

This is everywhere negative and would diverge to −∞ at a horizon if one were
present. The Boulware state is the zero-temperature ground state for quantum
fields propagating in the spacetime of a static uncollapsed star.

Suppose now that there is a horizon at r = r0 with nonvanishing surface
gravity κ0, so that

f(r0) = 0, κ0 = κ(r0) =
1
2
f ′(r0)eψ(r0) �= 0 . (39)

The Hartle-Hawking stress-energy is bounded at this horizon. This fixes the
constant in (37) at −κ2

0 and we find

PH =
�

24π
κ2

0 − κ2(r)
fe2ψ . (40)

Far from the hole, (36) and (40) reduce to

�H ≈ PH ≈
π

6�
T 2

H , TH =
κ0

2π
� , (41)
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representing thermal radiation at the Hawking temperature TH in (1 + 1)-di-
mensional Minkowski space. The local temperature T (r) of this radiation bath
rises with depth according to Tolman’s law,

T (r) = TH (−gtt)−1/2 , (42)

but the radiation density always remains bounded and, in fact, small for a mas-
sive black hole.

The Unruh state superposes upon the Hartle-Hawking stress-energy an in-
ward thermal flux of negative energy:

(T rt )U =
π

12�
T 2

He−ψ . (43)

This becomes infinitely blueshifted at the past horizon, but is regular along the
future horizon.

The difference between the Hartle-Hawking and Boulware stress-energies has
the exactly thermal form

ΔP = Δ� =
π

6�
T 2(r) . (44)

Thus the Hartle-Hawking state is thermally excited above the zero-temperature
Boulware ground state to a local temperature T (r) which grows without bound
near the horizon. It is nevertheless the Hartle-Hawking state which most nearly
conforms to what a gravitational theorist would call a vacuum at the horizon.
(The word “vacuum” is here reserved for a condition of zero stress-energy. In
curved space, because of vacuum polarization effects, no quantum state exactly
fulfils this condition.)

The thermal character of the difference (ΔTab)H−B between the Hartle-
Hawking and Boulware stress-energies was verified above for (1+1)-dimensions.
But it remains at least qualitatively valid generally, with obvious changes arising
from the dimensionality. In particular, the (3 + 1)- dimensional analogue of (44)
for a massless scalar field,

3ΔP ≈ Δ� ≈ π2

30�3T
4(r) . (45)

holds to a very good approximation, both far from the hole and very near
the horizon. Deviations occur in the intermediate region [10], but they remain
bounded and will be unimportant for our considerations.

4 Brick Wall Model

The simple relation between the Bekenstein-Hawking entropy SBH and horizon
area suggests that the horizon is actually the repository of this entropy. In 1985
’t Hooft [8] gave a concrete form to this idea by interpreting this entropy as that
of a “thermal atmosphere” extending a few Planck lengths above the horizon.
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This section is a paraphrase [11] of ’t Hooft’s calculation. We consider the
thermodynamics of hot quantum fields propagating outside a spherical star
with a perfectly reflecting surface and radius r1 a little larger than its grav-
itational radius r0. To maintain thermal equilibrium and keep the total field
energy bounded, suppose the system enclosed in a spherical container of radius
L substantially larger than r1.

For the space outside the star, assume a metric of the form

ds2 =
dr2

f(r)
+ r2 dΩ2 − f(r) dt2 . (46)

This is general enough to include the Schwarschild, Reissner-Nordström and
(anti-) de Sitter geometries (or any superposition of these) as special cases.

Into this space we introduce a set of quantum fields, raised to some temper-
ature T∞ at large distances, and in thermal equilibrium. The local temperature
is then

T (r) = T∞ f−1/2 , (47)

and becomes very large when r → r1 = r0 +Δr. We shall presently identify T∞
with the Hawking temperature TH of the horizon that would appear if r1 → r0.

Characteristic wavelengths λ of this radiation are small compared to other
relevant scales (curvature, size of container) in the regions of interest to us here.
For instance, very near the star’s surface,

λ ∼ �

T
= f1/2 �

T∞
 r0 . (48)

Elsewhere in the container, at considerable distances from the star,

f ≈ 1 , λ ∼ �

T∞
∼ r0  L . (49)

Therefore a particle description should be a good approximation to the sta-
tistical thermodynamics of the fields. (Equivalently, one can arrive at this con-
clusion by considering the WKB solution of the wave equation [8], [11].)

The extensive thermodynamical parameters then each receive two principal
contributions for large L and small Δr = r1 − r0:
(a) A volume term, proportional to 4πL3/3, representing the entropy and mass-

energy of a homogeneous quantum gas in a flat space (since f ≈ 1 almost
everywhere in the container if L/r0 → ∞) at a uniform temperature T∞.
This is the conventionally expected result and there is no need to consider
it in detail.

(b) Of more interest is the contribution of gas near the inner wall r = r1, which
we now proceed to study further. We shall find that it is proportional to the
wall area and at the same time diverging like (Δr)−1 when Δr → 0.
Because of the high local temperatures T near the wall for small Δr, we may

use the ultra-relativistic formulae

� =
3N
π2 T

4 , s =
4N
π2 T

3 (50)
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for the energy and entropy densities. The numerical factor N takes care of he-
licities, the number of particle species and the factor 7/8 which differentiates
fermionic from bosonic contributions.

The total entropy of the thermal excitations is given by the integral

S =
∫ L

r1

s(r) 4πr2
dr√
f
, (51)

where we have used the proper volume element for the metric (46). On the other
hand, the integral for their gravitational mass does not contain the factor f−1/2

as is well known (intuitively, it is counterbalanced by a negative contribution
from “gravitational potential energy”):

ΔMtherm =
∫ L

r1

�(r) 4πr2 dr . (52)

Substituting (50) and (47) into (51) gives for the wall contribution to the
thermal entropy

Swall =
4N
π2 4πr21 T

3
∞

∫ r1+δ

r1

dr
f2(r)

, (53)

where δ is a small radial interval subject toΔr  δ  r1 and otherwise arbitrary.
It is instructive to re-express this result in terms of the proper altitude

α =
∫ r1

r0

f−1/2 dr (54)

of the inner wall above the horizon r = r0 of the analytically extended exterior
geometry (46). (Really, of course, the physical space contains no horizon and
(46) is valid only for r ≥ r1.) For a non-extremal horizon we can write f(r) ≈
2κ0(r − r0) in (54), obtaining

Δr =
1
2
κ0α

2 , (55)

and (53) can be written

Swall =
N

90πα2

(
T∞
κ0/2π

)3 1
4
A (56)

in Planck units (� = c = G = 1), where A = 4π r21 is the wall area.
From (52) and (50) we find similarly that the thermal excitations near the

wall contribute

ΔMtherm,wall =
N

480πα2

(
T∞
κ0/2π

)3

T∞A (57)

to the gravitational mass of the system.
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Following ’t Hooft, we introduce a crude “brick wall” cutoff to allow for
quantum-gravity fluctuations by adjusting α so that we obtain the Bekenstein-
Hawking entropy from (56):

Swall = SBHwhen T∞ = TH . (58)

Notice that SBH = A/4 and TH = κ0/2π are purely geometrical quantities,
determined solely by the metric (46). From (56) and (58) (momentarily restoring
conventional units)

α = lPl
√
N/90π , (59)

so the cutoff is of the order of the Planck length. It is significant and crucial
that α turns out to be a universal constant, independent of the mass and other
characteristics of the system, depending only on the number of physical fields in
nature.

This universality permits a clean separation between the geometrical quanti-
ties A and TH and the thermodynamical quantities Swall, T∞ in the free energy

Fwall = − 1
16

(
T∞
TH

)3

T∞A , (60)

so that the entropy can be derived from it either via the Gibbs relation S =
−∂Fwall/∂T∞ holding the geometrical variables fixed (“off-shell”, i.e., breaking
the equality T∞ = TH), or via the Gibbs-Duhem relation F = ΔM − T∞S
(equivalent to S = −Tr (� ln �)). Thus, there is no need in this formulation to
maintain a distinction between “thermodynamical” and “statistical” entropy
[12].

These results raise a number of questions. According to (57) “on shell” (T∞ =
TH), thermal excitations near the wall contribute a mass-energy

ΔMtherm,wall =
3
16
ATH , (61)

which amounts to a substantial fraction of the mass of the background geome-
try – 3M/8 for a Schwarzschild geometry of mass M . But we assumed a fixed
background and have taken no account of back-reaction. How is this justified?
Secondly: our picture of hot quantum fields constituting a thermal atmosphere
suggests that we are describing the Hartle-Hawking state. But according to (50)
and (47), energy densities become huge near the wall, a behaviour quite unlike
the Hartle-Hawking stress-energy, which remains bounded, and indeed every-
where very small for a massive black hole. Further: should not the entropy of the
Gibbons-Hawking “instanton”, arising from the Euclidean topology of a black
hole (see (9)), be added to the entropy of the thermal excitations? But each by
itself already accounts for the full value of the Bekenstein-Hawking entropy.

All these problems have a simple resolution. The key remark is that ’t Hooft’s
brick wall model correctly interpreted does not represent a black hole. It represents
the exterior of a starlike object with a perfectly reflecting surface compressed
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to nearly (but not quite) its gravitational radius. As noted in the previous sec-
tion, the ground state for such object is not the Hartle-Hawking state but the
Boulware state, corresponding to zero outside temperature and with a quite dif-
ferent behaviour near the gravitational radius. It has negative energy density
and pressure, growing to Planck levels near the wall. Thus, the thermal energy
density �, given by (50), is not the only source of the wall’s mass; it has to
be supplemented by the ground-state energy. As in (45), we have for the total
stress-energy (ground state + thermal excitations) near the wall,(

T ν
μ

)
B

+
(
T ν
μ

)
therm

=
(
T ν
μ

)
H
, (62)

i.e., effectively the Hartle-Hawking stress-energy, which is bounded and small
for large masses. The total gravitational mass of the inner wall is accordingly
negligible. We are entirely justified in neglecting back-reaction.

Further, since there is no horizon in this model – it is replaced by the brick
wall, an inner boundary with the quite different topology S1×S2 in the Euclidean
sector (a horizon would be a regular point) – the Gibbons-Hawking instanton
does not contribute. All of the entropy derives from the thermal contribution
(56).

It thus emerges that we have two mutually exclusive and (in the Bohr sense)
complementary ways of understanding SBH. In the brick wall model (which is
not a black hole but it is externally indistinguishable from one), SBH appears
as entropy of thermal excitations above a zero-temperature ground state. In a
real black hole, thermal energies near the horizon are negligible and SBH has
a purely geometrical origin. What are the deeper implications of this duality?
This is a question it would be worth exploring.

The brick wall is treated here as a real physical barrier. To prevent misun-
derstanding this conception must be distinguished from a quite different one,
according to which the wall is fictitious [13], merely a mathematical cutoff used
to regularize the (Δr)−1 and logΔr terms in the expression for the thermal
entropy. These are then renormalized by adjusting the bare gravitational con-
stant G and the coefficients of the one-loop (quadratic in curvature) terms in
the effective gravitational Lagrangian. Formally, this scheme appears to work;
its conceptual basis and relationship to the physical brick wall model remains to
be clarified.

5 Operational Approach

The brick wall model still labours under the handicap that the wall’s altitude
above the horizon has to be adjusted by hand to give SBH with the correct
coefficient. This difficulty is not peculiar to the brick wall model. Of the various
microscopic approaches, only the string-based calculations have so far been able,
in special instances, to reproduce SBH without special tailoring.

This section outlines a phenomenological approach that gives SBH without
cutoffs or ad hoc adjustments and further supports the idea that SBH is a purely
surface property.
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In thermodynamics, the entropy of any state can be found by devising an
idealized reversible process which arrives at that state, starting from a state
of known entropy. The first law can be then used to compute the change of
entropy in the process. The process considered here is the reversible quasistatic
contraction of a massive thin shell towards its gravitational radius [14].

In the final stages of contraction towards a non-extremal horizon, the surface
stress-energy of the shell is dominated by its surface pressure P , which grows
without bound. The key result – which follows from the equations of mechanical
equilibrium of an equipotential shell in the limit where the shell approaches a
non-extremal horizon of the exterior geometry – is

lim
U→0

a

8π P
= 1 , (63)

where a is the proper acceleration of a static observer at the outer face of the
shell.

Pressure-dominance means that in these final stages the shell violates the
dominant-energy condition and develops other “unphysical” features. That is
irrelevant in the present context, since the shell is nothing more than an idealized
working substance designed to reversibly reach the final black hole state, which
is expected to be independent of its mode of formation.

We now sketch the derivation of (63). Let ξα be the timelike Killing vector
of the static exterior spacetime, and

uα =
dxα

dτ
= U−1ξα , ξ(α;β) = 0 , (64)

the 4-velocity of a static exterior observer. His proper acceleration a is given by

uα;β u
β = anα = ∂αU , (65)

where nα is the unit principal normal to his world-line, and the second equality
follows from (64).

The shell is assumed to lie on an equipotential surface U = const. of the
exterior geometry, so its outward normal coincides with nα. The proper-time
component of the extrinsic curvature K+

ab of the shell’s outer face is

K+
ττ = nα;βu

αuβ = −uα;βu
βnα = −a . (66)

The surface stress-energy Sba is given in terms of the jump of extrinsic curvature
[Kb

a] by the junction conditions

− 8πSba = [Kb
a − δbaK] . (67)

In the limit U → 0 of approach to a horizon, the acceleration a of a static
observer on the upper face becomes infinite if the horizon is not extremal. Hence
the components K±

ab are dominated by (Kτ
τ )+ = a. The surface density

σ = −Sττ =
1
8π

[Kθ
θ +Kϕ

ϕ ] (68)
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remains bounded, but the surface pressure

P =
1
2
(Sθθ + Sϕϕ) ≈ 1

8π
(Kτ

τ )+ =
a

8π
(U → 0) (69)

becomes infinite and asymptotically isotropic. This establishes (63).
The ground state for the space outside the shell is the Boulware state, whose

stress-energy would diverge to large negative values in the limit U → 0. To
neutralize the back-reaction which would result, suppose the exterior filled with
thermal radiation to produce a “topped-up” Boulware state (TUB) whose local
temperature equals the acceleration temperature

T = �
a

2π
(70)

at the shell’s outer face. (Near a horizon this is indistinguishable from the lo-
cal Hawking temperature TH (−gtt)−1/2.) To maintain thermal equilibrium (and
hence applicability of the first law), the shell itself must be raised to the same
temperature. This gives it a definite equation of state

T = T (M,A) , (71)

whose specific form can be found once the exterior geometry is specified. Al-
though the argument can be generalized, it is assumed here that the shell is
spherical, with area A = 4π R2.

The equation of state (71) relates the intensive variable T to two extensive
variables, the shell’s area A and proper mass M = σA as measured by a local
observer. Since the shell is uniform, and we require it to be a thermodynamical
system, it must be possible to rewrite (71) in a purely intensive form:

T = T (σ, n) . (72)

How one chooses to interpret the second intensive parameter n = N/A is quite
immaterial; for convenience, it may be referred to as “particle density”. Unlike
(71), there is a certain amount of freedom in the functional form (72) (i.e., in the
choice of n), but it is strongly constrained by the requirement of compatibility
with both (71) and the Gibbs-Duhem relations [14]. One possible choice, n∗

(“canonical equation of state”, distinguished by an asterisk) makes

μ∗n∗ = σ ⇒ μ∗N∗ =M (73)

where μ is the chemical potential associated with N .
The shell’s entropy at any stage of the slow contraction is given by

TS =M + PA− μN . (74)

The acceleration of a static observer on the outer face of a spherical shell with
flat interior is

a = 4π(σ + 2P ) . (75)



34 W. Israel

In the limit of approach to the gravitational radius, a, P and T diverge in
the non-extremal case, while M remains bounded. From (70) and (75) or (63),

lim
R→r0

(
P

T

)
=

1
4

�
−1 (κ0 �= 0) . (76)

Combining this with (73) and (74), it immediately follows that, for a shell
made of canonical material,

lim
R→r0

S =
1
4
A

�
(κ0 �= 0) , (77)

which is the Bekenstein-Hawking result.
Of course, one would expect the entropy of the final black hole to be indepen-

dent of the material we choose for the shell, and, indeed, the limit (77) is very
robust. Even for noncanonical material we still recover the limit (77) provided
only that

lim
T→∞

1
T

μN

M
= 0 . (78)

(Note that some restriction is obviously required, since the black hole limit
represents a singular state for the shell (P → ∞), and there would otherwise
be nothing to prevent the equation of state (72) from becoming “singularly
eccentric” in this limit.)

This derivation suggests an operational definition of the Bekenstein-Hawking
entropy as the maximum thermodynamical entropy that could be stored in the
material that goes to form the black hole, and that this maximum is attained
when the material is gathered into a thin shell near the horizon. This idealized
process bears no resemblance to actual black hole formation, but it is not dis-
similar from a time-reverse of the evaporation process as usually conceived in
terms of pair creation near the horizon.

The shell’s entropy is already within 1% of its final, Bekenstein-Hawking
value, when the redshift from its surface is 100, corresponding to an altitude of
1036 Planck lengths above the horizon for a solar-mass black hole. The shell thus
occludes ’t Hooft thermal atmosphere, which extends only a few Planck lengths
above the horizon and is the repository of all the entropy in the brick wall model.
To regard the shell as a direct phenomenological representation of the thermal
atmosphere is in certain respects an oversimplification.

It is helpful to look at a concrete example. For a spherical shell of proper
mass M and charge Q, the exterior metric is Reissner-Nordström, i.e., in (46)

f(r) = 1− 2m
r

+
Q2

r2
, (79)

and the explicit formulas are

m =M − 1
2
M2 −Q2

R
, P =

1
16π

M2 −Q2

R2(R−M)
, (80)
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a =
1
2
Rf ′(R)
R−M . (81)

It is then easy to check explicitly that (63) and (77) follow in the non-extremal
case (Q2 < m2).

The situation is quite different for an extremally charged shell (Q2 = m2 ⇒
Q2 = M2), because P is no longer dominant in the limit R → r0, but actually
vanishes, while a and T remain finite. From (73) and (74) we now find that
the entropy vanishes for a shell made of canonical material, so that a black
hole formed out of this material would satisfy the third law in its strongest
(Planck) form. However, it is clear from (74) that the limiting entropy now
depends sensitively on the choice of shell material.

Thus it would appear than an extremal black hole differs from a generic one
in that its entropy is not a thermodynamical state function, i.e., not independent
of its mode of formation and past history. This may account for the conflicting
results found in the literature. Arguments based on instanton topology and pair
creation suggest that the entropy of extremal black holes is zero. On the other
hand, the uncannily successful indirect derivations of SBH by counting states of
strings on D-branes recover the traditional value A/4� for extremal black holes.
Perhaps the distinction between the extremal and non-extremal cases is less a
matter of zero versus nonzero temperature but rather the finite versus infinite
temperatures at the horizon measured by local stationary observers. There are
many precedents for a situation where a simplicity and universality found at
high temperatures breaks down at ordinary temperatures.

6 Conditional Entropy

Evaporation of a black hole is accompanied, as we saw in Sect. 3, by an influx of
negative energy through the future horizon. It is also marked by a slow decrease
in horizon area, i.e., in the entity we have referred to as “Bekenstein-Hawking
entropy” SBH. Two questions now present themselves.

First, if it were permissible to think of this “entropy” as a signed quantity,
then we could describe the evaporation process as one in which the black hole
acquires negative entropy as well as negative energy from its surroundings.

Secondly, and going considerably further, if this stuff – whatever its nature,
fine-grained or coarse-grained – could be sensibly conceived as having properties
that are at least partially localizable and capable of flowing from place to place
like energy, then one could graduate to a description in which the influx of
negative energy is accompanied by a flux of negative entropy, represented by an
entropy current Sμ. In (1 + 1)-dimensions, for example, the energy flux in the
Unruh state,

ΔTab = 〈Tab〉U − 〈Tab〉H = Hin v,av,b , Hin = − π

12�
T 2

H (82)

(cf. (28)), could be associated with an entropy flux

ΔSa = −T−1
H Hin v,a , (83)
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the relationship between the two being the standard one of covariant thermody-
namics [15]:

ΔSa = −ΔTab βb , βb = T−1
H
∂xb(v, r)
∂v

. (84)

This line of thought immediately runs into the difficulty that entropy, as con-
ventionally defined – classically, as the averaged negative logarithm of a probabil-
ity distribution, quantum-mechanically, as −Tr (� ln �), where � has eigenvalues
between 0 and 1 – is an innately positive quantity. There is, however, an allied
concept, “conditional entropy” [16], which applies to multi-component systems
and is capable of taking negative values for quantum-entangled subsystems.

To introduce this concept, it is best to begin classically. Consider a system of
two components A, B with joint probability pab that A and B occupy the states
a and b respectively. The classical (Shannon) entropy of the composite system is

S(A,B) = −〈ln pab〉 ≡ −
∑
a,b

pab ln pab , (85)

and, of course, is non-negative, since

pab ≥ 0 ,
∑
a,b

pab = 1 . (86)

The entropy of subsystem B is similarly

S(B) = −〈ln pb〉 = −
∑
a,b

pab ln pb = −
∑
b

pb ln pb , (87)

where pb =
∑
a

pab, and there is a similar formula for S(A).

If it is known that B occupies state b, the conditional probability pa|b that
A is in state a is given by Bayes’ theorem:

pa|b =
pab
pb
. (88)

The conditional entropy of A modulo B is defined by

S(A|B) = −〈ln pa|b〉 = −
∑
a,b

pab ln pa|b . (89)

Generally, the conditional entropy of a system is a measure of our ignorance of
its internal state, given that we know the states of one or more specified other
systems with which it has correlations. Substituting (88) into (89) gives at once

S(A|B) = S(A,B)− S(B) . (90)

Classical conditional entropy is non-negative, since pa|b is a standard probability
distribution satisfying the conditions (86).
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Quantum-mechanically, (90) may be retained as the definition of S(A|B),
since the right-hand side is well-defined in terms of the joint and reduced density
matrices �AB and �B = Tr �AB :

S(A,B) = −Tr (�AB ln ρAB) , S(B) = −Tr (�B ln ρB) . (91)

Now, however, a new feature enters. If the combined system is in a pure state,
then S(A,B) = 0 and the conditional entropy S(A|B) = −S(B) is negative. A
and B are now perfectly correlated, and it can be shown that S(A) = S(B) in
this case. This common value is called “entanglement entropy”:

Stangle = S(A) = S(B)− S(A|B) = −S(B|A) ({A,B} pure) . (92)

This indicates that it is not absurd to think about negative entropy in the context
of quantum entanglement.

A more deepreaching analysis would attempt to define a conditional density
matrix �A|B by some analogue of Bayes’ law (88). It is however, not straight-
forward to define the quotient of matrices whose eigenvalues can include zero.
These questions will not be pursued here; they are still under active development
[17].

7 Entropy from a Pure State

If the two subsystems of the previous section are identical copies of each other,
and coupled in a special way to form a pure state, each of them becomes macro-
scopically indistinguishable from a hot body at a definite temperature T . In
effect, each of them becomes a heat bath for the other.

We consider a composite system made up of a pair of identical subsystems
(e.g., oscillators, fields, field modes propagating in opposite Kruskal sectors of
an external black hole) labelled 1, 2 and having Hamiltonians H1, H2 identical
in form and with common eigenvalues En:

H1|n〉1 = En|n〉1 , H2|n〉2 = En|n〉2 . (93)

We now form a pure state |T 〉 of the total system, characterized by a real,
non-negative parameter T , which entangles the subsystems according to

|T 〉 = Z−1/2
∑
n

e−En/2T |n〉1 ⊗ |n〉2 , (94)

where Z =
∑
n

e−En/T to secure the normalization 〈T |T 〉 = 1.

Of course the entropy of this pure state is zero:

S = −Tr (� ln �) = 0 , � ≡ |T 〉〈T | . (95)

But tracing over the eigenstates |n〉2 yields a density matrix for 1 whose eigen-
values are the Boltzmann factors for a system at temperature T :

�1 = Tr2 � = Z−1
∑
n

e−En/T |n〉1 1〈n| . (96)
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Its entropy reduces to the usual thermodynamical expression,

S(�1) = −Tr (�1 ln �1) = lnZ + T−1〈E〉T . (97)

The same result is obtained for S(�2). Thus, the “entanglement entropy” Stangle
= S1 = S2 is positive, yet the entropy of the total system is zero.

If, further, the energy levels are evenly spaced (En = nω), then the “thermal-
ly entangled” state |T 〉 is also a ground state for collective excitations on the
double Fock space of the composite system. We have

Â|T 〉 = 0 ,whereÂ = Z−1/2(â1 ⊗ 1− e−ω/2T 1⊗ â+2 ) , (98)

and â1, â2 are the annihilation operators for the two subsystems.
Conversely, if one is interested solely in macroscopic effects or a coarse-

grained description, then the mixed state of a system in thermal equilibrium
can be mentally “purified” by the formal trick of doubling the Fock space, thus
converting statistical averages into quantum expectation values on the enlarged
space. Given a system 1 at temperature T , we mentally adjoin an identical copy
2 – it can be thought of as an ersatz heat bath for 1 – such that the enlarged
system is in the entangled state |T 〉. Macroscopically, |T 〉 is indistinguishable
from a thermal state for the original system 1. If O1 is any operator that acts
only on states of 1, its thermal average is equal to its quantum expectation value
in state |T 〉:

〈O1〉T = Tr (�1O1) =
∑
n

e−En/T
1〈n|O1|n〉1 = 〈T |O1|T 〉 . (99)

In this way statistical mechanics is reduced to quantum field theory and all of the
sophisticated graphical techniques of that subject can be brought to bear. This
is the idea underlying the “thermofield dynamics” of Takahashi and Umezawa
[18].

Thermofield dynamics encodes a reflexive symmetry between the twin sys-
tems 1 and 2 that is reminiscent of the reflection symmetry between the left and
right halves of Kruskal’s picture of an eternal black hole (Fig. 1). In fact, there
is an exact correspondence between the two representations. Systems 1 and 2
correspond to field modes propagating in the (causally disjoint) right and left
Kruskal sectors R and L. The thermally entangled state |T 〉 corresponds to the
ground state on the full Kruskal manifold, i.e., the Hartle-Hawking state |0〉H.
Static observers, whose natural ground state is the Boulware state |0〉B, and who
are “parochial” in the sense that their world-lines are confined to a supra-horizon
sector (say R), perceive the global state |0〉H as thermal.

Possible implications of this correspondence hinge of course on the question
whether mathematical models of eternal black holes sufficiently resemble real
black holes formed in a stellar collapse. For a black hole of stellar origin, sectors
L and P in Fig. 1 are obliterated and supplanted by the star. But enough remains
of the common sector F to preserve a meaningful connection between the two
halves of the vacuum manifold. In particular, a correlated pair of modes of
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Fig. 1. Kruskal map of extended vacuum spacetime representing a Schwarzschild black
hole. If the black hole was formed by stellar collapse, only the region to the right of the
hatched curve (representing the star’s surface) is physically meaningful. (On the left,
the vacuum manifold has to be replaced by a nonsingular, more conventional geometry
representing the interior field.) The figure shows a correlated pair of Boulware modes
propagating alongside the horizon

opposite norm propagating in the right and left sectors of the eternal black
hole should correspond in the real black hole to a virtual pair, of opposite total
(i.e., including “potential”-) energies +E, −E, created near the future horizon
and propagating side-by-side just above and below it [19]. (For a particle of 4-
momentum pα, E = −pαξα, where ξα is the Killing vector which passes from
timelike to spacelike at the horizon.)

These considerations suggest that the correlations found in the thermofield-
dynamical model of an eternal black hole may have a real counterpart in corre-
lations between the inside and outside of a real black hole. Since quantum corre-
lations grow inversely with distance, they would be strongest near the boundary
– the horizon – suggesting a picture of entanglement entropy strongly localized
near the horizon. Thus, it is conceivable (though very far from proven) that
the thermally entangled pure state |T 〉 is not merely an artefact of an artificial,
stripped-down model of a heat bath, but actually represents, at least schemati-
cally, the internal state of a black hole formed by collapse.

8 Thermofield Dynamics of Black Holes

A black hole enclosed in a container will reach a state of thermal equilibrium: the
Hartle-Hawking state. This state is empty of modes positive-frequency in Kruskal
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time: free-falling observers at the horizon register an absence of “particles”.
Static observers, whose notion of positive frequency is defined by the static
Killing parameter t, will disagree: from the perspective of their ground state –
the Boulware state, free of Killing modes – the Hartle-Hawking state is filled
with a thermal distribution of “particles”. This section will examine the mode
structure of these two states and the relationship between them, topics treated
more phenomenologically in the previous sections.

The aspects of interest here are concerned entirely with the time-dependence
of field modes, with spatial dependence carried along as mere baggage. To keep
the notation simple, the spatial dependence will be schematized as far as possible
by working in (1+1)-dimensions. But the arguments are quite general, and apply
with only cosmetic changes to arbitrary (tidally deformed) static black holes, to
cosmological horizons of de Sitter type and to uniformly accelerated frames in
Minkowski space.

The metric is taken in the form (29), i.e.,

ds2 =
dr2

f(r)
− f(r) e2ψ(r) dt2 , (100)

with a horizon at r = r0, characterized by

f(r0) = 0, κ0 =
1
2
f ′(r0) eψ(r0) , (101)

and Kruskal co-ordinates U , V defined by

dV
κ0V

dU
(−κ0U)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =
{

dv
du

}
= dt± dr

f(r)eψ(r) , (102)

so that
u = − 1

κ0
ln |U | , v =

1
κ0

ln |V | , t =
1
2
(v − u) . (103)

It is important to note that t, u, v run backwards in the left-hand Kruskal sector
L (Fig. 2).

A real massless quantum field Φ, satisfying �Φ = 0, can be decomposed as

Φ(U, V ) = Φout(U) + Φin(V ) , [Φout(U), Φin(V )] = 0 , (104)

and we shall focus on the outgoing component Φout(U), since the other piece is
handled the same way.

We next introduce two sets, F (±)
ω (U), of right-moving “Killing-Boulware”

modes: F (+)
ω (U) are nonzero only for U < 0, i.e., confined to the right-hand and

white hole sectors R and P of the Kruskal geometry, see Fig. 2; F (−)
ω (U) are
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Fig. 2. Kruskal map of eternal Schwarzschild black hole. Schwarzschild time t runs
backwards in the left-hand Schwarzschild sector L

nonzero for U > 0 and propagate in the left-hand and black hole sectors L and
F . They are defined by

F (ε)
ω (U) = θ(−εU) fω(u) , fω(u) =

1√
4π|ω|

e−iωu (105)

and form an orthonormal set:

(F (ε)
ω , F

(ε′)
ω′ ) = ε(ω) ε δεε′ δ(ω − ω′) , (106)

where ε(ω) ≡ sign (ω) and θ is the unit step function. The Klein-Gordon inner
product for arbitrary wave modes f , g is defined as usual by

(f, g) = i
∫

(
↔

f∗∂ag) dΣa = i
∫ ∞

−∞
(

↔
f∗∂T g) dZ , (107)

where the integration is over a complete Cauchy slice with a globally consistent
future normal (indicated by n in Fig. 2), and Z, T are Kruskal-like co-ordinates,
i.e., U = T −Z, V = T +Z. The factor ε in (106) arises from the contraposition
of n and the direction of increasing u in sector L. Thus, F (ε)

ω has positive norm,
and is effectively “positive-frequency” in Killing time, if ωε (rather than simply
ω) is positive.

The functions F (ε)
ω (U) form a complete set of outgoing modes and define the

Boulware quantization of the Klein-Gordon field Φ through the decomposition

Φout(U) =
∑
ε=±

∫ ∞

−∞
dω F (ε)

ω (U) b(ε)ω , (108)
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with commutation relations[
b(ε)ω , b

(ε′)
ω′

]
= ε(ω) ε δεε′ δ(ω − ω′) , b

(ε)
−ω = b(ε)ω

+
, (109)

and a similar expansion of Φin(V ). (The corresponding b-operators should carry
distinguishing “out” and “in” labels, omitted here for simplicity.) According
to this notation, b(ε)ω is an annihilation or creation operator according as ωε is
positive or negative. This is unconventional, but permits compact and convenient
expression of mode expansions and commutation relations.

An alternative quantization scheme is based on the Kruskal-Hartle-Hawking
(KH2) modes HΩ(U), HΩ(V ), where

HΩ(U) =
1√

4π|Ω|
e−iΩU . (110)

However, in this harmonic form the KH2 modes are not related quite as
simply as they can be to the Killing- Boulware (KB) modes. Instead, we resort
to a device due to Unruh [4], who builds an equivalent form of KH2 mode by
fitting together a pair of KB modes of opposite norm, one from the L-sector
and one from the R-sector, to make a linear combination which is analytic and
positive-frequency in Kruskal time.

Recall that an analytic function f(t) is positive-frequency in t (i.e., its Fourier
spectrum contains only positive frequencies) if it is regular and bounded in the
lower half of the complex t-plane. The function ln+ t – defined as that branch of
ln t equal to ln |t| on the lower imaginary axis and with branch cut in the upper
half-plane – has the first of these two properties. Note that its values on the real
axis are given by

ln+ t = ln |t|+ i
π

2
ε(t).

It follows that eiω ln+ t (for both signs of ω) is positive-frequency in t. Generalizing
slightly, the two functions defined for real t by

lnε t = ln |t|+ i
π

2
ε(t)ε (111)

have imaginary exponentials

eiω lnε t = eiω ln |t|
{

e−επω/2θ(t) + eεπω/2θ(−t)
}

(112)

which are positive-frequency if ε = +1, negative-frequency if ε = −1.
The right-hand side of (112) has the form of a linear combination of two

KB-modes (105), recalling that u = −κ−1
0 ln |U |. Thus, the functions

K
(ε)
ω (U) =

√
sinhχω coshχω

4π |ω| exp
{

iω
κ0

lnε(ω)ε U

}
(113)

= F (ε)
ω (U) coshχω + F (−ε)

ω (U) sinhχω (114)
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are positive-frequency in U if ωε is positive, negative-frequency if ωε is negative.
They have the same orthonormality properties as F (ε)

ω :(
K(ε)
ω ,K

(ε′)
ω

)
= ε(ω′) ε δεε′ δ(ω − ω′) . (115)

The Bogoliubov parameter χω is defined by

tanhχω = e−π|ω|/κ0 . (116)

The KH2-modes K(ε)
ω define Hartle-Hawking quantization in accordance with

Φ(U) =
∑
ε=±

∫ ∞

−∞
dωK(ε)

ω (U) a(ε)ω , (117)

where the Hartle-Hawking operators a(ε)ω have the same commutation relations
as the Boulware operators b(ε)ω :[

a(ε)ω , a
(ε′)
ω′

]
= ε(ω) ε δεε′ δ(ω − ω′) , a

(ε)
−ω = a(ε)ω

+
. (118)

The Bogoliubov transformation which relates the two sets of operators is
contragradient to the mode transformation (114):

a(ε)ω = (coshχω) b(ε)ω − (sinhχω) b(−ε)ω . (119)

Remarkably, this has precisely the “thermal” form encountered in Sect. 6.
Comparison of (119) and (116) with (98) shows that the temperature associated
with this transformation is the Hawking temperature TH = κ0/2π.

It is straightforward to check, with the aid of the commutation relations
(109), that (119) can be re-expressed in the convenient exponential form

a(ε)ω = e−iG b(ε)ω eiG , (120)

where

G = G+ =
i
2

∑
ε=±

∫ ∞

−∞
dω ε(ω) ε χω b

(ε)
−ωb

(−ε)
ω (121)

= i
∫ ∞

0
dω χω

(
b(+)
ω

+
b(−)
ω − b(+)

ω b(−)
ω

+)
. (122)

In accordance with our conventions, the first term in (122) involves the prod-
uct of two creation operators in opposite sectors R and L, and correspondingly
the second term the product of two annihilation operators.

The ground states for the two quantization schemes, defined by

a(ε)ω |0〉H = 0 , b(ε)ω |0〉B = 0 , (ωε > 0) , (123)

are, accordingly to (120), formally linked by

|0〉H = e−iG|0〉B , (124)
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although this relation needs to be treated with some caution [18]. (An infinite
number of soft Boulware modes are contained in |0〉, which leads to difficulties
with convergence of the partition function, i.e., the normalizing factor. Strictly
speaking, |0〉H and |0〉B are “unitarily inequivalent”.)

A more explicit and physically clearer form of (124) can be obtained by fac-
torizing the operator exp(−iG) into its creation and annihilation parts. This is
accomplished by a generalization of the Baker-Campbell-Hausdorff (BCH) iden-
tity. We now state this, deferring an outline of the derivation to the Appendix.
Generalized BCH identity. If two operators A, B and their commutator C

satisfy the commutation relations

[A,B] = C , [C,A] = 2n2A , [B,C] = 2n2B (125)

for some number n (real or complex), then for any parameter χ,

eχ(A+B) = exp
{

1
n

(tanhnχ)A
}

exp
{

1
2n

(sinh 2nχ)B
}

· exp
{
− 1
n2 (ln coshnχ)C

}
. (126)

(As a simple check: in the limit n→ 0, (126) reduces to the familiar BCH identity

eχ(A+B) = eχAeχBe−χ2C/2

as it should for the case where C commutes with A and B.)
In the application of interest here – see (122) –

Aω = b(+)
ω

+
b(−)
ω , Bω = −b(+)

ω b(−)
ω

+
(ω > 0)

so that A is composed of creation operators and B of annihilation operators.
Then

Cω = b(+)
ω

+
b(+)
ω + b(−)

ω

+
b(−)
ω ,

and the commutation relations (125) are found to be satisfied with n = 1, so
(126) is applicable.

Discretizing the integral (122) as G =
∑
ω

Gω then yields immediately

e−iGω |0〉B = eχω(Aω+Bω)|0〉B

=
1

coshχω
exp
{

(tanhχω)b(+)
ω

+
b(−)
ω

}
|0〉B

=
1

coshχω

∞∑
n=0

(tanhn χω) |n(+)
ω , n(−)

ω 〉B , (127)
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where |n(+)
ω , n

(−)
ω 〉B is the Boulware state with an equal number n of correlated

Boulware modes of frequency ω in the L and R sectors.
Now, introducing the inverse Hawking temperature β by

β−1 = TH =
κ0

2π
(128)

and recalling (116), we can write

tanhχω = e−π|ω|/κ0 = e−βω/2 (129)

cosh2 χω =
1

1− e−βω =
∞∑
n=0

e−nβω ≡ Zω , (130)

so that (127) becomes

e−iGω |0〉B = Z−1/2
ω

∞∑
nω=0

e−βnωω/2 |n(+)
ω , n(−)

ω 〉B . (131)

This result is for a single, fixed frequency ω. Finally, summing over all frequen-
cies, we arrive at

|0〉H =
∏
ω

e−iGω |0〉B = Z−1/2
∑
n

e−βEn/2|n(+),n(−)〉B , (132)

where n stands for a set {nω, ∀ω > 0} of occupation numbers for all positive ω,
and

En ≡
∑
ω

nω ω , Z ≡
∑
n

e−βEn =
∏
ω

Zω . (133)

(The occupation number for ingoing modes F (+)
ω (v) should also be folded into

n = (nin,nout).) Thus, we have found that |0〉H has precisely the form of the
thermally entangled state |T 〉 encountered in (94).

The states |n(−)〉B represent Boulware modes F (−)
ω which never enter sector

R and are unobservable by static observers confined to that sector. Tracing out
these modes from the pure state |0〉H leads to the thermal density matrix

�+ ≡ Tr−
(
|0〉HH〈0|

)
= Z−1

∑
n

e−βEn |n(+)〉〈n(+)| . (134)

The expectation value in state |0〉H of any “parochial” operator O(+) (a function
of the “+” operators b(+)

ω only) is the same as its (thermal) average with respect
to the parochial density matrix �+:

H〈0|O(+)|0〉H = Tr (�+O(+)) = 〈O(+)〉T . (135)

We might (almost) say that the sensation of heat near a black hole is caused by
our ignorance of modes hidden behind the horizon, echoing Pauli’s words, “Was
ich nicht weiss, macht mich heiss.”
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9 Black Hole Evaporation

If information really is recovered when a black hole evaporates, and if this is a
continuous process extending through the lifetime of the hole, then closer study
of slow evaporation should turn up clues to how this recovery takes place. This
concluding section offers some pointers on how thermofield-dynamical techniques
can be extended to describe a slowly evaporating black hole.

During evaporation the surface gravity κ0, i.e., the temperature, changes
(“adiabatic transformation”), and the horizon shrinks, i.e., shifts inward
(“isothermical transformation”). Adiabatic transformations are described by
the group of thermal Bogoliubov transformations (119) or (120) and are elemen-
tary. (Sect. 3 engaged the question of how κ0 is defined for a nonstatic black
hole.) We shall therefore concentrate here on the effects of horizon-displacement.

To describe a moveable horizon, we rewrite (103) as

u = − 1
κ0

ln |U − U0| ,

so the future horizon is now at U = U0. We consider the effect of a displacement
of this horizon to U = Ū0, where Ū0 = U0 − α. To find directly the effect on the
Boulware modes (105) is quite difficult. (Wave packets sandwiched in the range
U0 − α < U < U0 are converted from negative-norm F (−)(U) to positive-norm
F (+)(U) modes.) But on Hartle-Hawking modes in their harmonic form (118),

HΩ(U − U0) =
1√

4π|Ω|
e−iΩ(U−U0) ,

the effect of the displacement is trivial:

HΩ(U − Ū0) = e−iΩαHΩ(U − U0) .

The relation (114) between KH2 and KB modes then allows us to derive the
effect on the latter.

The eventual result is that in the Ω-representation the Boulware operators
bΩ and the Boulware U0-dependent ground state |0;U0〉B transform according
to

b̄Ω(α) = e−iαGbΩeiαG , |0;U0 − α〉B = e−iαG|0;U0〉B (136)

where

G = G+ =
1
2

∫ ∞

−∞

∫ ∞

−∞
dΩ1dΩ2 g(Ω1, Ω2)bΩ1bΩ2 ,

and

g(Ω1, Ω2) ≡ −ε(Ω1, Ω2)
∫ ∞

−∞
dΩA(Ω1,−Ω) |Ω|A(Ω,Ω2) ,

A(Ω,Ω′) ≡ C(Ω,Ω′) θ(ΩΩ′) + S(Ω,Ω′) θ(−ΩΩ′) ,
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C
S

}
(Ω,Ω′) ≡

∫ ∞

−∞

coshχ
sinhχ

}
μ(Ω,Ω′;x) dx

μ(Ω,Ω′;x) ≡ 1
2π2 |ΩΩ

′|−1/2
∣∣∣∣ ΩΩ′

∣∣∣∣ix/π , tanhχ ≡ e−|x| .

The Bogoliubov transformation (136) implicitly describes how shrinkage of
the horizon unveils previously hidden outgoing Boulware wave packets and re-
stores to the exterior correlations between pairs previously separated by the
horizon. To unravel the details of this is a nontrivial task which may have its
rewards. Understanding how the black hole loses its entropy – i.e., how informa-
tion escapes from a layer near the surface – could hold clues to the seemingly
unrelated question, usually considered the crux of the information-loss problem:
how does information about the state of the collapsed star leak to the outside
from the deep interior in apparent defiance of causality? [20]

10 Concluding Remarks

It has been widely held that the entropy contributed by thermal excitations or
entanglement is a one-loop correction to the zero-loop (or “classical”) Gibbons-
Hawking geometrical contribution. The view advocated here is (at least super-
ficially) quite different. One may consider these two entropy sources – (a) brick
wall, no horizon, strong thermal excitations near the wall, Boulware ground
state; and (b) black hole, horizon, weak (Hartle-Hawking) stress-energy near the
horizon, Hartle-Hawking ground state – as equivalent but mutually exclusive
(complementary in the sense of Bohr) descriptions of what is externally virtu-
ally the same physical situation. The near-vacuum experienced by free-falling
observers near the horizon is eccentrically but defensibly explainable, in terms
of description (a), as a delicate cancellation between a large thermal energy and
an equally large and negative ground-state energy – just as the Minkowski vac-
uum is explainable to a uniformly accelerated observer as a thermal excitation
above his negative-energy (Rindler) ground state. (This corresponds to setting
f(r) = r, ψ = 0 in (29).) The artificiality of such a description is underlined by
the fact that the delicate balance must extend to fluctuations: fluctuations of
the Boulware ground-state energy would have to be exactly correlated with the
enormous thermal fluctuations near a horizon to reproduce the relatively small
fluctuations of the Hartle-Hawking state.

The brick wall model (as well as numerous other attempts to derive SBH
statistically by focusing on the neighbourhood of the horizon) presents us with
a feature which is logically not impossible but strange and counterintuitive from
a gravitational theorist’s point of view. Although the wall is insubstantial (just
like a horizon) – i.e., space there is practically a vacuum and the curvature low
– it is nevertheless the repository of all of the Bekenstein-Hawking entropy of
the model.
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Frolov and Novikov [19] and others have argued that this is just what may be
expected of black hole entropy in the entanglement picture. Entanglement will
arise from virtual pair-creation in which one partner is “invisible” and the other
“visible”. Thus, on this picture, the entanglement entropy arises almost entirely
from the strong correlations between the near field variables on the two sides of
the partition, an effect already present in flat space.

This in turn suggests that SBH is (in the literal sense) a superficial property,
that it should be considered an effective entropy for a black hole, in the sense that
6000 K is an effective temperature for the sun. As far as their interactions with
the environment are concerned, both objects are indistinguishable from shells
(of the same size and mass) whose entropy and temperature have the effective
values.
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Appendix. Derivation of Generalized BCH Identity (126)

Consider the operator
F (χ) = exAeyBezC , (137)

where x, y, z are undetermined functions of the parameter χ. We shall attempt
to choose these functions so that F is reducible to exp(χ(A+B)).

Differentiating (137) with respect to χ,

F−1F ′(χ) = x′e−zC(e−yBAeyB)ezC + y′e−zCBezC + z′C. (138)

Now, from the commutation relations [C,A] = 2mA, [B,C] = 2mB (we write
m in place of n2 for typographical convenience),

e−yBAeyB = A+ y[A,B] +
1
2
y2
[
[A,B], B

]
+ . . . = A+ yC − y2mB ,

e−zCAezC = e−2mzA , e−zCBezC = e2mzB

Hence (138) reduces to

F−1F ′ = x′(e−2mzA+ yC − y2me2mzB) + y′e2mzB + z′C . (139)

We require this expression to equal A+B. Equating coefficients of A,B and
C yields three equations for x, y, z:

x′e−2mz = 1 , (y′ −mx′y2)e2mz = 1 , z′ + x′y = 0 .
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Let f(χ) = e−2mz. The first and third of these equations then give x′ = f−1,
y = f ′/2m. Substituting into the second equation results in a second-order linear
equation for

√
f :

d2√f
dχ2 = n

√
f .

The solution, subject to the initial conditions x ≈ y ≈ χ, z ≈ 0 when χ → 0 is
f(χ) = cosh2 nχ. This leads to the identity (126).
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Perturbations of Black Holes
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Abstract. The theory of non-charged, either static or rotating, black hole perturba-
tions is reviewed in this chapter. Perturbations are classified into axial and polar. Their
equations decouple and reduce to Schrödinger wave equations. Special attention is paid
to quasi-normal modes for black holes and how they can be excited, since gravitational
waves are emitted at their frequencies and they appear in many dynamical processes.

1 Introduction

The theory of perturbations is one of the most powerful tools to study how stars
and black holes evolve, interact and “inform” the rest of the Universe about their
changes sending gravitational waves to the outer space. The simplest formulation
of the theory, known as the quadrupole formalism, considers small perturbations
of a flat spacetime (weak field approximation):

gμν = ημν + hμν , |hμν |  1 .

The Einstein equations are linearized about the flat background and solved under
the assumption that the velocities of the bodies involved in the problem are much
smaller than the speed of light (slow motion approximation). In this way, the
perturbation can be shown to be related only to the time variation of the energy
density of the source, i.e.⎧⎪⎨⎪⎩

h̄μ0 = 0 , μ = 0, 3

h̄ik(t, r) =
2G
c4r

[
d2

dt2
qik
(
t− r

c

)] ,

where h̄μν = hμν − 1
2η

μνh, and

qik(t) =
1
c2

∫
V

T 00(t, xn)xixkdx3

is the quadrupole moment of the source. Although this formalism is based on
two very strong assumptions, i.e. that gravitational interactions do not dominate
and that the velocities are small, it allows to estimate the amount of radiation
emitted, for instance, by a triaxial, rotating neutron star and to predict the
slowing down of its rotational period due to the energy loss; in addition, it has
been successfully applied to compact binary systems to predict the variation of
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the orbital period. Indeed, because the energy is lost in gravitational waves, the
orbit shrinks, and the period decreases by an amount which can be evaluated if
the masses and the orbital parameters are known.

In 1975, Hulse and Taylor applied the quadrupole formalism to predict the
slowing down of the period of the binary pulsar PSR 1913+16 [1]. They found
dP/dt = −2.4 · 10−12, in excellent agreement with the observed value, dP/dt =
−(2.3±0.22) ·10−12, thus providing the first indirect evidence of the existence of
gravitational waves. It may be reminded that PSR 1913+16 is composed of two
neutron stars, with masses m1 = 1.4411 M� and m2 = 1.3874 M�, revolving
on an eccentric orbit (e = 0.617139), with orbital separation l0 = 0.19 · 1012 cm
and keplerian frequency νk = 3.583 · 10−5 Hz.

However, there are cases when the weak field assumption and/or the slow
motion approximation need to be released. The slow motion hypothesis implies
that the wavelength of the emitted radiation must be much larger than the
typical size of the source. This is certainly true for a binary system like PSR
1913+16, since in that case the radiation is emitted in several spectral lines at
frequencies multiple of the orbital frequency, thus

λGW ∼ c

νk
∼ 1015 cm , and λGW � l0 .

But if one wants to describe a neutron star pulsating in its fundamental mode
of frequency νf = 2− 3 kHz, we find that λGW ∼ 107 cm, and since the typical
size of a neutron star is D ∼ 20 km, λGW ∼ D.

In addition, there are cases when also the weak field assumption must be
released, as for instance, when a mass is captured by a black hole and we want
to find the signal which is emitted when the mass is close to the black hole
horizon. In such cases, instead of considering perturbations of a flat spacetime
one can consider perturbations of a given exact solution of Einstein’s equations
which can describe either a star or a black hole

gμν = g0μν + hμν , |hμν |  |g0μν | ,

and solve the Einstein equations linearized about this background. In this chap-
ter I will describe some of the most interesting issues related to the theory
of black hole perturbations, whereas another chapter will be devoted to stel-
lar perturbations. Since fifty years of work cannot be summarized in a few
pages, I will select some topics that are, in my opinion, relevant. First of all
I will explain in some detail how the equations governing the perturbations of a
Schwarzschild black hole can be separated and reduced to simple wave equations
of a Schrödinger type. The same procedure will be applied to non-rotating stars,
and we will see that in that case a wave equation can be obtained only for the
axial perturbations.

Then I will focus on the notion of quasi-normal modes (QNMs), which is cen-
tral to the theory of black hole and stellar perturbations, because the frequencies
of these modes are characteristic of many dynamical processes involving star and
black hole oscillations, and because the gravitational radiation is emitted at these
frequencies.
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Finally I will show that the QNMs can be excited, discussing, as an example,
the case of a point particle captured by a black hole. Only non-charged black
holes will be considered in this chapter.

2 The Perturbations of a Schwarzschild Black Hole

The theory of perturbations of black holes was initiated by T. Regge and J.A.
Wheeler in 1957 [2]. As they explain in their paper, the question they wanted to
answer was the following:

“A sphere of water held together by gravitational forces is stable against small
departures from sphericity. A sphere of water surrounded by a spherical shell
of liquid mercury is also an equilibrium configuration for gravitational forces,
but a situation of unstable equilibrium. Initial small departures from sphericity
at the water-mercury interface will grow exponentially, and the mercury will
concentrate with a rush at the center of the sphere. Which situation will more
closely correspond to the behavior of a Schwarzschild singularity subjected to a
small initial perturbation?”

Thus the initial motivations for studying the perturbations of a static black
hole was to establish if the solution is stable. By expanding the perturbed met-
ric tensor in tensorial spherical harmonics, Regge and Wheeler showed that the
equations separate, and split into two decoupled sets, belonging to different “par-
ities”. As we shall later see explicitly, the parity is associated to the behaviour of
the angular part of the perturbations under the transformation ϑ → π − ϑ and
ϕ→ π + ϕ. In particular those that transform like (−1)(�+1) are said to be odd,
or axial, and those that transform like (−1)(�) are said to be even, or polar. The
stability of the Schwarzschild solution was studied by resolving the perturbations
into proper modes, which satisfy the condition that the radial part of the pertur-
bation is well behaved both at radial infinity and at the horizon, and finding for
each mode the corresponding eigenfrequency. Since imaginary proper frequen-
cies would correspond to an unacceptable space behaviour, they concluded that
a Schwarzschild black hole is stable against axial perturbations. The stability of
the polar perturbations was not considered in their paper. Regge and Wheeler
also showed that the equations for the radial part of the axial perturbations
of a Schwarzschild black hole can be reduced to a single Schrödinger-like wave
equation with a real potential barrier.

A substantial advance in the field was done more than ten years later, in 1970,
when F. Zerilli succeeded in reducing the equations of the polar perturbations to
a single wave equation. He also computed the source term when the perturbation
is excited by an infalling massive test-particle [3]. It is interesting to remind
that during those years J. Weber had started his experiments with resonant
gravitational detectors, opening the way to the detection of gravitational waves,
and stimulating a new interest in the theory of perturbations of stars and black
holes.

The inhomogeneous equation derived by Zerilli allowed to compute the spec-
trum and the waveform of the signal emitted when masses are scattered or cap-
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tured by a Schwarzschild black hole, and this was a very interesting information
in view of a possible detection.

I shall now show explicitly how the perturbed equations can be separated and
reduced to wave equations. In the following I shall assume that the background
metric is the Schwarzschild metric

ds2 = e2νdt2 − e2μ2dr2 − e2μ3dϑ2 − e2ψdϕ2 (1)

with e2ν = e−2μ2 = (1− 2M/r) and e2μ3 = r2, e2ψ = r2 sin2 ϑ.

2.1 The Separation of the Perturbed Equations

The first step to separate the angular part of the perturbed Einstein equations is
to expand the metric perturbation hμν and the stress-energy tensor of the source
Tμν , if present, into tensorial spherical harmonics. A suitable basis to expand
symmetric tensors is given by the following tensor harmonics [2,3]

a�m = [erer Y�m]
b�m = 21/2n(�)r [er∇ Y�m]
c�m = 21/2n(�) [erL Y�m]

d�m = 21/2m(�)r
{

[L∇ Y�m] +
1
r

[erL Y�m]
}

f�m = 2−1/2m(�) (e�m + h�m)
g�m = −2−1/2n(�)2 (e�m − h�m)

a(0)
�m = [etet Y�m]

a(1)
�m = 21/2 [eter Y�m]

b(0)
�m = 21/2n(�)r [et∇ Y�m]

c(0)
�m = 21/2n(�) [etL Y�m]

where

e�m = r2
{

[∇∇ Y�m] +
2
r

[er∇ Y�m]
}

h�m = [LL Y�m] + r [er∇ Y�m] ,

n(�) = [�(�+ 1)]−1/2

m(�) = [�(�+ 1)(�− 1)(�+ 2)]−1/2
,

and ∇ is the operator of covariant derivative, er is the unit vector along the
radial direction, et = (1, 0, 0, 0), and L is the angular momentum operator

L = −ir ∧∇ .
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Choosing this basis, any symmetric tensor can be expanded as follows

T =
∑
�m

[
A

(0)
�ma(0)

�m +A(1)
�ma(1)

�m +A�ma�m

+B(0)
�mb(0)

�m +B�mb�m +Q(0)
�mc(0)

�m

+Q�mc�m +G�mg�m +D�md�m + F�mf�m] ,

where the coefficients of the expansion are given by the inner product between
the tensor and the corresponding harmonic; for instance

A
(0)
�m =

∫
a(0)μν∗
�m Tμν dΩ ,

and dΩ is the solid angle element. The explicit expressions of the tensor har-
monics are given in the Appendix.

Parity. If we apply the parity operator which transforms

θ → π − θ and ϕ→ π + ϕ ,

c�m, d�m, c(0)
�m transform like (−1)(�+1) and are said axial or odd, whereas a�m,

b�m, f�m, g�m, a(0)
�m, a(1)

�m, b(0)
�m transform like (−1)(�) and are said polar or even.

Consequently, any symmetric tensor T expanded in harmonics has an axial and
a polar part; for this reason when we expand the perturbed metric tensor we
find

hax =
∑
�m

[
Q

(0)
�mc(0)

�m +Q�mc�m +D�md�m
]
,

hpol =
∑
�m

[
A

(0)
�ma(0)

�m +A(1)
�ma(1)

�m +A�ma�m

+B(0)
�mb(0)

�m +B�mb�m +G�mg�m + F�mf�m
]
,

The coefficients Q(0)
�m, Q�m, . . . etc. have to be found by solving the Einstein equa-

tions, or, if we consider a star, the Einstein equations coupled to the equations of
Hydrodynamics. It appears convenient to write the coefficients in the following
form

Q
(0)
�m =

√
2i

n(l)r
hax

0�m Q�m =
√

2i
n(l)r

hax
1�m

D�m = − i√
2m(l)r2

h2�m A
(0)
�m = 2N�me2ν

A
(1)
�m = −

√
2H1�m A�m = −2L�me2μ2

B
(0)
�m = −

√
2

n(l)r
h0�m B�m =

√
2

n(l)r
h1�m

F�m = −
√

2
m(l)

V�m G�m =
√

2[l(l + 1)V�m − 2T�m]
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With this choice the perturbed metric tensor takes the form (from now on, we
shall omit the subscript �m from the metric perturbations)

hax
�m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(t) (ϕ) (r) (ϑ)

0 hax
0 sinϑ

∂Y�m
∂ϑ

0 −hax
0

1
sinϑ

∂Y�m
∂ϕ

hax
0 sinϑ

∂Y�m
∂ϑ

−1
2
h2 sinϑX�m hax

1 sinϑ
∂Y�m
∂ϑ

−1
2
h2sinϑW�m

0 hax
1 sinϑ

∂Y�m
∂ϑ

0 −hax
1

1
sinϑ

∂Y�m
∂ϕ

−hax
0

1
sinϑ

∂Y�m
∂ϕ

−1
2
h2sinϑW�m −hax

1
1

sinϑ
∂Y�m
∂ϕ

1
2
h2

1
sinϑ

X�m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(2)

hpol
�m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(t) (ϕ) (r) (ϑ)

2e2νNY�m −h0
∂Y�m
∂ϕ

−H1Y�m −h0
∂Y�m
∂ϑ

−h0
∂Y�m
∂ϕ

−2e2ψH11 h1
∂Y�m
∂ϕ

−r2V X�m

−H1Y�m h1
∂Y�m
∂ϕ

−2e2μ2LY�m h1
∂Y�m
∂ϑ

−h0
∂Y�m
∂ϑ

−r2V X�m h1
∂Y�m
∂ϑ

−2e2μ3H33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where

H11 =
[
TY�m + V

(
1

sin2 ϑ

∂2

∂ϕ2 + cotϑ
∂

∂ϑ

)
Y�m

]
,

H33 =
[
TY�m + V

∂2

∂ϑ2 Y�m

]
.

At this point we can fix the gauge: we make an infinitesimal coordinate trans-
formation

x′i = xi + ξi, (4)

expand the vector xi into vector harmonics:

ξ(t, ϕ, r, ϑ) =
∑
�m

{
ξ
(0)
�m [∇ Y�m] + ξ(1)�m [L Y�m] + ξ(2)�m [er Y�m] +

ξ�m [et Y�m]} , (5)
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where the vector harmonic [L Y�m] is axial, and the remaining three [∇ Y�m],
[er Y�m], [et Y�m], are polar. Thus, the components of ξ can be used to eliminate
four components of hμν . For instance, we can set

hax
2 = Hpol

1 = hpol
0 = hpol

1 = 0,

and with this choice the perturbed metric becomes

hax
�m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(t) (ϕ) (r) (ϑ)

0 hax
0 sinϑ

∂Y�m
∂ϑ

0 −hax
0

1
sinϑ

∂Y�m
∂ϕ

hax
0 sinϑ

∂Y�m
∂ϑ

0 hax
1 sinϑ

∂Y�m
∂ϑ

0

0 hax
1 sinϑ

∂Y�m
∂ϑ

0 −hax
1

1
sinϑ

∂Y�m
∂ϕ

−hax
0

1
sinϑ

∂Y�m
∂ϕ

0 −hax
1

1
sinϑ

∂Y�m
∂ϕ

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

hpol
�m =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(t) (ϕ) (r) (ϑ)

2e2νNY�m 0 0 0

0 −2e2ψH11 0 −r2V X�m

0 0 −2e2μ2LY�m 0

0 −r2V X�m 0 −2e2μ3H33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

We are now in a position to compute the components of the Einstein equations
for the metric written above. At the time Regge, Wheeler and Zerilli did it, it
was a quite formidable task; today we can do it very easily by using any program
of symbolic manipulation on a PC.

2.2 The Axial and Polar Equations

The relevant equations for the axial perturbations are:

δGϑϕ = 0 :
sinϑ

2

(
∂2
ϑ − cotϑ∂ϑ −

1
sinϑ2 ∂ϕ2

)
Y�m(ϑ, ϕ)

·
{
−iωe−2νhax

0 − e−2μ2
[
hax

1,r + (ν − μ2),rhax
1
]}

= 0 (8)



Perturbations of Black Holes 57

δGrϑ = 0 : − 1
2 sinϑ

∂ϕY�m(ϑ, ϕ)
{

e−2ν
[
ω2hax

0 − iω
(
hax

0,r −
2
r
hax

0

)]
−2n
r2
hax

1 − 2e−2μ2hax
1

[
ν,rr +

(
1
r

+ ν,r

)
(ν − μ2),r

]}
= 0 .

In addition the equilibrium equation Gϑϑ = 0 gives

ν,rr +
(

1
r

+ ν,r

)
(ν − μ2),r = 0 ,

which allows to write the perturbed equations as

−iωe−2νhax
0 − e−2μ2

[
hax

1,r + (ν − μ2),rhax
1
]

= 0 ,

e−2ν
[
−iω

(
hax

0,r −
2
r
hax

0

)
+ ω2hax

1

]
− 2n
r2
hax

1 = 0 . (9)

By operating in a similar way on the polar equations we find

δGtr :
[

d
dr

+
(

1
r
− ν,r

)]
(2T − kV )− 2

r
L = 0

δGtϑ : T − V + L = 0

δGrϑ : (T − V +N)r −
(

1
r
− ν,r

)
N −

(
1
r

+ ν,r

)
L = 0

δGrr :
2
r
N,r +

(
1
r

+ ν,r

)
(2T − kV ),r −

2
r

(
1
r

+ 2ν,r

)
L

− 1
r2

(2nT + kN)e2μ2 + ω2e−2ν+2μ2(2T − kV ) = 0

δGϑϑ − δGϕϕ
sin2 ϑ

: V,rr +
(

2
r

+ ν,r − μ2,r

)
Vr +

e2μ2

r2
(N + L)

+ω2e2μ2−2νV = 0 (10)

where k = �(�+1), and 2n = k− 2. In writing these equations, we have Fourier-
expanded all perturbed variables

f(t) =
∫ +∞

−∞
f(ω)e−iωtdω

2.3 A Wave Equation for the Axial and Polar Perturbations
of a Schwarzschild Black Hole

The two equations for the axial perturbations (9) can be reduced to a single
wave equation by eliminating hax

0 and by introducing the function

Zax(ω, r) = eν−μ2
hax

1 (ω, r)
r

.



58 V. Ferrari

The equation for Zax is

d2Zax

dr2∗
+ [ω2 − V ax

� (r)]Zax = 0 , (11)

which is known as the Regge-Wheeler equation [2], where r∗ = r+2M log(r/2M−
1), and

V ax(r) =
e2ν

r3
[�(�+ 1)r + r3 − 6M ] .

The reduction of the polar equations to a single wave equation is much more
difficult, and requires a repeated use of the equilibrium equation. However also
in that case it is possible to show that, by introducing a function Zpol defined
as

Zpol(ω, r) =
r

nr + 3M

(
3MV (ω, r)− rL(ω, r)

)
,

the polar equations reduce to the Zerilli equation [3]

d2Zpol

dr2∗
+ [ω2 − V pol

� (r)]Zpol = 0 , (12)

where

V pol(r) =
2(r − 2M)
r4(nr + 3M)2

[n2(n+ 1)r3 + 3Mn2r2 + 9M2nr + 9M3] .

It must be stressed that the two potential barriers depend only on the black hole
mass. They have a different analytic form, but similar shape; indeed they vanish
at ±∞ like

V → er∗/2M (r∗ → −∞) , V → 1
r2

(r∗ → +∞) , (13)

as it is shown in Fig. 1.
The curvature generated by a pointlike mass appears in the perturbed equa-

tions as a one-dimensional potential barrier and consequently the response of a
black hole to generic perturbations can be studied by investigating the manner
in which a gravitational wave incident on that barrier is transmitted, absorbed
and reflected, a phenomenon which is familiar in elementary quantum theory.

Thus, the theory of black hole perturbations can be formulated as a scattering
theory, which has been beautifully illustrated by S. Chandrasekhar in the book
The mathematical theory of black holes [4].
We shall now introduce the important notion of quasi-normal modes.

3 The Quasi-normal Modes

In 1970 Vishveshwara [5] pointed out that the equations governing the pertur-
bations of a Schwarzschild black hole should allow complex frequency solutions
which satisfy the boundary condition of a pure outgoing wave at infinity. This
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idea was confirmed by Press [6] who found that an arbitrary initial perturbation
decays as a pure frequency mode. However only in 1975 Chandrasekhar and De-
tweiler [7] actually computed the discrete eigenfrequencies of these modes and
since then the concept of quasi-normal modes (QNMs) has been central to the
theory of perturbations of stars and black holes.

In the case of black holes these modes are defined to be solutions of the
axial and polar wave equations that satisfy the boundary conditions of a pure
outgoing wave at infinity and of a pure ingoing wave at the black holes horizon,
the latter corresponding to the requirement that nothing can escape from the
horizon:

Z → eiωr∗ , r∗ → −∞ ,

Z → e−iωr∗ , r∗ → +∞ ,

(as it is shown in Fig. 1).
In the scattering theory these boundary conditions identify the singularities

of the reflection amplitude associated to the potential barrier. Since the oscil-
lations are damped by the emission of gravitational waves, the eigenfrequencies
of the QNMs are complex ω = ω0 + iωi. The real part is the pulsation rate, the
imaginary part is the inverse of the damping time.

They depend exclusively on the parameters that identify the spacetime ge-
ometry, i.e. the mass, and, if the black hole rotates or is charged, the angular
momentum and the charge. Consequently these frequencies will be characteristic
of many processes involving the dynamical perturbations of black holes.

The potential barriers of the Regge-Wheeler and of the Zerilli equations admit
the same transmission and reflection coefficients, and consequently the axial and
polar perturbations are isospectral [4]. As we shall see in the chapter on stellar
perturbations, this is not true for stars! It follows that the spectrum of the axial
and polar gravitational waves emitted by a black hole will be peaked at exactly
the same frequencies, providing a clear signature of the nature of the source [8].

r*

V

Z ~   e
+ i -i ωωr* r*

Z ~   e

Fig. 1. The potential barrier of the wave equations
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The frequency of the lowest QNMs were found by Chandrasekhar and De-
tweiler by transforming the wave equations into a Riccati equation [7] as follows

d2Z

dr2∗
+ [ω2 − V�(r)]Z = 0 , putting Z = exp

{
i
∫ r∗

Φdr∗
}
,

the equation becomes
iΦ,r − Φ2 + ω2 − V = 0 ; (14)

the QNMs correspond to the solutions of (14) that satisfy the boundary condi-
tions

r∗ → +∞ Φ→ −ω , r∗ → −∞ Φ→ +ω , ω = ω0 + iωi .

The values of the first few eigenfrequencies for � = 2, 3 are given in Table 1 in
units of the black hole mass.

Table 1. The values of the lowest quasi-normal mode frequencies for � = 2, 3, are
given in units of the black hole mass

Mω + iMω Mω + iMω

� = 2 0.3737+i0.0890 � = 3 0.5994+i0.0927

0.3467+i0.2739 0.5826+i0.2813

0.3011+i0.4783 0.5517+i0.4791

0.2515+i0.7051 0.5120+i0.6903

For example, if a black hole has a mass of 1 M� or if it is a supermassive
black hole with M = 106 M�, the frequencies and damping times of the lowest
QNMs are, respectively,

M = 1M� , ν0 = 12.06 kHz , τ = 5.55 · 10−5 s ,
M = 106M� , ν0 = 1.21 · 10−2 Hz , τ = 55.5 s .

The gravitational signal emitted by a perturbed black hole will, during its last
stages, decay as a superposition of the first few quasi-normal modes. Thus, the
frequencies of the lowest modes are utmost significant physically and they are
rather easy to compute. Conversely, great care must be used to determine the
entire spectrum. For instance, a WKB approximation has also been used to solve
for the lowest modes [9,10,11,12] and a higher order WKB approach has been
developed to find the frequencies of the higher order modes [13]. To complete
the study of the QNM spectrum, the method of continued fraction, the phase-
integral method and the theory of the Regge poles have also been applied; a
complete bibliography on the subject can be found in [14].
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The results of this extensive study can be summarized shortly as follows
• For any value of the harmonic index � the real part of the frequency, ω0n(�),

approaches a non zero limiting value as the order n of the mode increases.
• The imaginary part, ωin(�), increases linearly as n/4.
• The asymptotic behaviour is, to a high accuracy, independent of �.

4 Perturbations of a Kerr Black Hole

The perturbations of a Schwarzschild black hole described in Sect. 2 have been
studied in terms of the perturbed metric tensor. An alternative approach con-
siders the perturbations of the Weyl, Maxwell and Ricci scalars through the
equations of the Newman-Penrose formalism. Using this latter approach in 1972
Teukolsky [15], [16] was able to decouple and separate the equations governing
the perturbations of a Kerr black hole and to reduce them to a single master
equation for the radial part of the perturbation Rlm:

ΔRlm,rr + 2(s+ 1)(r −M)Rlm,r + V (ω, r)Rlm = 0
Δ = r2 − 2Mr + a2 .

The potential V (ω, r) is

V (ω, r) =
1
Δ

[
(r2 + a2)2ω2 − 4aMrmω + a2m2

+2is(am(r −M)−Mω(r2 − a2))
]
+
[
2isωr − a2ω2 −Alm

]
.

The angular part of the perturbations, Slm, satisfies the equations of the oblate
spheroidal harmonics{

[(1− u2)Slm,u],u +
[
a2ω2u2 − 2amωsu+ s+Alm −

(m+ su)2

1− u2

]
Slm = 0 ,

u = cos θ .

The complete perturbation is

ψs(t, r, θϕ) =
1
2π

∫
e−iωt

∞∑
l=|s|

l∑
m=−l

eimϕSlm(u)Rlm(r) dω , (15)

where s = is the spin-weight parameter: s = 0,±1,±2, for scalar, electromagnetic
and gravitational perturbations, and Alm is a separation constant.

It should be stressed that, unlike the potential barrier of a Schwarzschild
black hole which is real and independent of the harmonic index m, the potential
barrier of a Kerr black hole is complex and depends on the frequency and on m.

As a consequence, an interesting phenomenon occurs when electromagnetic
or gravitational waves are scattered on the complex potential barrier of a rotating
black hole; if the incident wave has a frequency in the range

0 < ω < ωc , where ωc =
am

2Mr+
, m > 0 , (16)
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the reflection coefficient associated to the potential barrier exceeds unity [17].
This phenomenon is called superradiance, and it is the analogue, in the domain
of wave propagation, of the Penrose process in the domain of particle creation.

4.1 The Quasi-normal Modes of a Kerr Black Hole

The quasi-normal frequencies of a Kerr black hole have been first determined
by Detweiler [18], and subsequently by Leaver [19], Seidel and Iyer [20] and
Kokkotas [21].

Since the rotation removes the degeneracy presented by the Schwarzschild
modes, different eigenfrequencies are expected for different values of the har-
monic index m. The calculations show that when a increases, ω0n(a, �,m) is
bounded but the imaginary part is not. Moreover, when a→M the more highly
damped frequencies coalesce to the purely real value of the critical frequency for
superradiant scattering ωc = m/2M .

In this context, an interesting result was obtained by Detweiler in 1977. He
found that when a Kerr black hole becomes “extreme”, i.e. when a → M , the
imaginary part of the frequency of its quasi-normal modes tends to zero. If
excited, this mode would set the black hole into an oscillation that would never
decay, suggesting that extreme Kerr black holes are “marginally unstable”. It
was subsequently shown by Mashoon and the author [22] that when a→M , the
amplitude of these modes tends to zero, and consequently quasi-normal modes
with a real frequency cannot exist in the ordinary regime.

5 Can the Quasi-normal Modes be Excited?

In the preceding sections we have considered source-free perturbations. We shall
now assume that the source of the perturbations is, for example, a mass falling
into a Schwarzschild black hole. We shall impose that the infalling mass is much
smaller than the black hole mass, m0 M .

Under this assumption m0 can be assumed to move on a geodesic of the
unperturbed spacetime and its stress-energy tensor

Tμν = m0
dT
dτ

dzμ

dτ
dzν

dτ
δ(r −R(t))

r2
δ(2)[Ω −Ω(t)] (17)

will act as a source of the first order perturbed Einstein equations

δGμν =
8πG
c4
Tμν .

In (17) δ(2)[Ω −Ω(t)] = δ[cos θ− cosΘ]δ[ϕ− Φ], and τ is the proper time of
m0 along the geodesic

zμ = [T (τ), R(τ), Φ(τ), Θ(τ)] .

As an example, we shall consider the case of a test-particle falling radially
into the black hole. In this case, it will not excite the axial modes since the source



Perturbations of Black Holes 63

Fig. 2. The � = 2 gravitational signal emitted when a mass m0 = 10−3 M� falls
radially into a black hole of mass M = 1.5 M�, located at a distance of 15 Mpc

term of the Regge-Wheeler equation vanishes. After expanding the stress-energy
tensor in spherical harmonics and Fourier-transforming all time dependent quan-
tities, the equations for the polar perturbations can be written as

d2Zpol(ω, r∗)
dr2∗

+ [ω2 − V pol]Z� = Spol((ω, r∗),

where

Spol =
4m0(�+ 1/2)1/2

nr + 3M

(
1− 2M

r

)
·
[(
γ2
0 − 1 +

2M
r

)−1/2

− 2inγ0
ω(nr + 3M)

]
eiωT (r) ,

γ0 = (1− v2∞)−1/2, and v2∞ is the velocity of the particle at infinity [23]. These
equations can be numerically integrated by imposing the boundary conditions
of pure outgoing wave at radial infinity and of pure ingoing wave at the black
hole horizon.
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The structure of the signal is shown in Fig. 2, where the waveform is plotted
for a mass m0 = 10−3 M� falling into a black hole of massM = 1.5M�, located
at a distance of 15 Mpc from Earth.

The waveform exhibits an oscillating tail, emitted when 2 < r/M < 4.5, i.e.
when m0 is very close to the black hole horizon, which can be fitted with the
superposition of the first two quasi-normal modes. This means that these modes
are excited by the infalling mass and that the perturbed black hole oscillates
until its mechanical energy is radiated away in gravitational waves. In this case
the total radiated energy is ΔE ∼ 0.01

(
m2

0/M
)
.

It should be stressed that the quadrupole formalism would not be able to
reproduce the ringing part of the signal shown in Fig. 2.

Similar results can be obtained ifm0 falls spiralling into the black hole. In this
case both the polar and the axial perturbations are excited (though the axial
perturbations are usually less energetic than the polar ones), and due to the
contribution of the higher multipoles, the total energy radiated in gravitational
waves increases by a factor which, depending on the angular momentum of the
infalling mass, can be as high as 50 [24].

If the black hole rotates, [25] the situation can be summarized as follows. For
radial capture along the symmetry axis, the energy emitted is larger than that
emitted in the non-rotating case. For example, if a = 0.99M the energy is about
1.65 times larger than that for a = 0. If the particle falls in the equatorial plane
with a vanishing angular momentum, the energy is about 4.27 times larger than
that for a = 0. The particle will, in general, excite the quasi-normal modes of the
black hole and more energy is emitted if the particle is co-rotating than if it is
counter-rotating. Quasi-normal modes are barely excited when a particle, start-
ing at rest at infinity, is scattered by a rotating black hole, unless the periastron
is located very close to the black hole horizon.

6 Concluding Remarks

In this chapter we have discussed only a few of the many interesting issues which
arise when the dynamical behaviour of black holes is studied by using a perturba-
tive approach. We have seen that, both for rotating and nonrotating black holes,
the perturbed equations reduce to a Schrödinger-type equation, and it is possi-
ble to analyze the perturbation in terms of the scattering of gravitational waves
by the potential barrier generated by the spacetime curvature. This approach
proved extremely powerful in the study of how a black hole reacts to an exter-
nal perturbation, allowed to clarify the manner in which incident gravitational,
electromagnetic and scalar waves are absorbed and reflected, and brought light
to the superradiant nature of the scattering of waves of appropriate frequency
by rotating black holes [4].

The existence of the quasi-normal modes shows that the gravitational field
possesses its own modes of vibration and we have seen that the gravitational
radiation emitted when a black hole is perturbed by a source exhibits an os-
cillating tail, which is a superposition of these modes. Since the characteristic
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frequencies of the QNMs depend only on the mass and on the angular momen-
tum of the black hole, this part of the signal carries direct information on the
physical parameters of the emitting source.

In the next part, we shall show how the theory of stellar perturbations can
be constructed in analogy with the theory of black holes perturbations and we
shall see that this approach has proven likewise fruitful.

Appendix: The Explicit Expressions of Tensor Harmonics

a(0)
�m =

⎛⎜⎜⎜⎜⎝
(t) (ϕ) (r) (ϑ)

Y�m(ϕ, ϑ) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠ , a(1)
�m =

1√
2

⎛⎜⎜⎜⎜⎝
(t) (ϕ) (r) (ϑ)
0 0 Y�m(ϕ, ϑ) 0
0 0 0 0

Y�m(ϕ, ϑ) 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠

a�m =

⎛⎜⎜⎜⎜⎝
(t) (ϕ) (r) (ϑ)
0 0 0 0
0 0 0 0
0 0 Y�m(ϕ, ϑ) 0
0 0 0 0

⎞⎟⎟⎟⎟⎠

b(0)
�m=

n(�)r√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(t) (ϕ) (r) (ϑ)

0
∂Y�m
∂ϕ

0
∂Y�m
∂ϑ

∂Y�m
∂ϕ

0 0 0

0 0 0 0
∂Y�m
∂ϑ

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, b�m=

n(�)r√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(t) (ϕ) (r) (ϑ)
0 0 0 0

0 0
∂Y�m
∂ϕ

0

0
∂Y�m
∂ϕ

0
∂Y�m
∂ϑ

0 0
∂Y�m
∂ϑ

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

f�m=
m(�)r2√

2

⎛⎜⎜⎜⎜⎝
(t) (ϕ) (r) (ϑ)
0 0 0 0
0 − sin2 ϑW�m 0 X�m
0 0 0 0
0 X�m 0 W�m

⎞⎟⎟⎟⎟⎠ , g�m=
r2√
2

⎛⎜⎜⎜⎜⎝
(t) (ϕ) (r) (ϑ)
0 0 0 0
0 sin2 ϑY�m 0 0
0 0 0 0
0 0 0 Y�m
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c(0)
�m =

ın(�)r√
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(t) (ϕ) (r) (ϑ)

0 − sinϑ
∂Y�m
∂ϑ

0
1

sinϑ
∂Y�m
∂ϕ

− sinϑ
∂Y�m
∂ϑ

0 0 0

0 0 0 0
1

sinϑ
∂Y�m
∂ϕ

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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c�m =
ın(�)r√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(t) (ϕ) (r) (ϑ)
0 0 0 0

0 0 − sinϑ
∂Y�m
∂ϑ

0

0 − sinϑ
∂Y�m
∂ϑ

0
1

sinϑ
∂Y�m
∂ϕ

0 0
1

sinϑ
∂Y�m
∂ϕ

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

d�m =
ım(�)r2√

2

⎛⎜⎜⎜⎜⎜⎝
(t) (ϕ) (r) (ϑ)
0 0 0 0
0 − sinϑX�m 0 − sinϑW�m

0 0 0 0

0 − sinϑW�m 0
1

sinϑ
X�m

⎞⎟⎟⎟⎟⎟⎠
X�m(ϑ, ϕ) = 2

∂

∂ϕ

[
∂

∂ϑ
− cotϑ

]
Y�m(ϑ, ϕ)

W�m(ϑ, ϕ) =
[
∂2

∂2ϑ
− cotϑ

∂

∂ϑ
− 1

sin2 ϑ

∂2

∂2ϕ

]
Y�m(ϑ, ϕ) .
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Critical Phenomena in Gravitational Collapse:
The Role of Angular Momentum

José M. Mart́ın-Garćıa and Carsten Gundlach

Faculty of Mathematical Studies, University of Southampton, Southampton SO17
1BJ, UK

Abstract. After reviewing the basics of Critical Phenomena in Gravitational Collapse
of a spherically symmetric perfect fluid system, we address the relevance of adding
angular momentum to the process. We study two different examples: the same perfect
fluid but now with angular momentum, and Vlasov matter (collisionless particles, each
with angular momentum). Using linear perturbation theory we show that in the former
case there are still critical phenomena, explicitly predicting the associated scaling laws.
We show that, on the contrary, critical phenomena are not generic for Vlasov matter.

1 Introduction

In 1993 Choptuik [1] discovered that the threshold of black hole formation in
massless scalar field collapse was much simpler than one could expect. Although
this is a regime with very strong gravitational coupling, which must be stud-
ied with sophisticated numerical techniques, it can be easily described within
the theory of general dynamical systems. In fact, borrowing concepts from that
theory, what we now call Critical Phenomena in Gravitational Collapse is just
the study of the boundaries between different basins of attraction in the phase
space of General Relativity. It has become both a discipline by itself in General
Relativity and an active area of research, and continues to be considered the
most important new result in Numerical Relativity.

After Choptuik’s discovery in scalar field collapse, the same phenomenology
was found in many other matter models, including perfect fluids, nonabelian
gauge fields, or even gravitational waves. Most of these investigations assumed
spherical symmetry (actually all of them except for the collapse of axisymmetric
waves, which does not have a spherical counterpart), and dealt with electrically
neutral matter models. But because generic black holes have electric charge and
angular momentum, apart from mass, it is important to know what happens in
the generic case.

We have predicted [2], and it has been subsequently verified in nonlinear
simulations [3], that the addition of electric charge to the scalar field problem
does not prevent critical phenomena. On the contrary, new scaling phenomena
are found, confirming their relevance in General Relativity.

In this work we present some current ideas and results about the effects of
adding angular momentum to critical systems. We start with a review of Critical
Phenomena in spherical symmetry, restricting ourselves to a perfect fluid matter
model, and then we study the effects of adding angular momentum. We do it in
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two different ways: we can keep the perfect fluid description for the matter but
consider nonspherical situations, or we can work with a spherical distribution of
particles, each one having angular momentum. We finish with the conclusions
section.

2 Critical Phenomena

2.1 Self-gravitating Perfect Fluid

In this and the following sections our matter model will be a self-gravitating
perfect fluid, with stress-energy tensor

Tμν = � uμuν + p (gμν + uμuν) , (1)

where uμ(x) is the 4-velocity field of the fluid, and �(x), p(x) are its total energy
density and pressure, respectively, as measured by comoving observers at x. The
evolution of the metric field is given by the Einstein equations

Gμν = 8πTμν , (2)

while the evolution of the fluid is just given, for this simple matter model, by
stress-energy conservation. The system of equations is closed by adding an equa-
tion of state of the form p = p(�). Note that because we have chosen a barotropic
equation of state with � as independent variable we do not need to include the
particle-number density in the problem, nor particle-number conservation as an
equation of motion. This simplifies the description of the system.

We will be interested in self-similar solutions of the system and therefore we
restrict ourselves to the only family of equations of state which are compatible
with self-similarity [4]:

p(�) = κ� , (3)

where κ is a dimensionless constant, because this is the only way of avoiding
introducing a dimensionful scale in the problem which would prevent scale in-
variance. The speed of sound cs of the fluid can be calculated as

c2s =
∂p

∂�
= κ , (4)

and therefore, for causality, κ must be a number between 0 and 1. κ = 0 corre-
sponds to a pressureless fluid (dust), while κ = 1 is known as the “stiff” fluid
and can be shown to be equivalent to a scalar field when the fluid is irrotational.
The only truly physical case in this family is the κ = 1/3 radiation fluid.

Now suppose that the system is spherically symmetric. The spacetime (M4, g)
can be given as M4 = M2 × S2, where S2 is the unit two-sphere and M2 is a
1+1 manifold with boundary (the “reduced spacetime”). The metric can be 2+2
decomposed as

ds2 = gμν(x)dxμdxν = gAB(xD)dxAdxB + r2(xD)γabdxadxb . (5)
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Capital letters A,B, ... are indices on M2 while lower case letters a, b, ... denote
the usual θ, φ coordinates on S2. gAB is a metric and r is a scalar on M2,
while γab is the unit metric on S2. A spherically symmetric fluid is given by
uμ = (uA, ua = 0), being uA and � both functions of xD.

We can choose coordinates in M2 in several different ways, but it has proved
to be very convenient in critical phenomena theory to choose a radial gauge, so
that the scalar field r becomes a radial coordinate x1 ≡ r, and the polar slicing,
which here means that the time coordinate x0 ≡ t is orthogonal to the radial
coordinate. The metric is then

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dΩ2 . (6)

In order to have a regular center we need the functions α and a to be even in
r, with a(t, r = 0) = 1. Finally, there is a residual gauge freedom in α related
to changes t→ t′(t), which is commonly fixed in Critical Phenomena theory by
imposing α(t, r = 0) = 1, so that t is the proper time of a central observer.

A complete set of equations of motion for the system is finally, in polar-radial
coordinates:

a,r
a

+
a2 − 1

2r
= 4πa2r�

1 + κV 2

1− V 2 , (7a)

α,r
α
− a

2 − 1
2r

= 4πa2r�
κ+ V 2

1− V 2 , (7b)

1− κV 2

1− κ
�,t
α

+ V
�,r
a

=
1 + κ
a(1− κ)

[
4πa2r�2(1 + κ)V − r−1�(2V + rV,r)

]
(7c)

1− κV 2

1− κ
V,t
α

+ V
V,r
a

=
1− V 2

a(1− κ)
[
−4πa2r�κ(1 + V 2)

+2r−1(1− a2) + 2r−1(3 + a2)κV 2] (7d)

We have defined the velocity V = aur/αut with respect to constant r observers.

2.2 Criticality

Following Choptuik’s strategy of bisection searching, Evans and Coleman [5]
evolved initial conditions of the form

V (0, r) = 0, �(0, r) =
η

2π3/2r20
exp(−r2/r20) , (8)

parametrized by η and r0. The total gravitational mass of that initial Gaussian
profile is M = ηr0/2, so that η = 2M/r0 is a dimensionless measure of the
strength of the initial gravitational field, while r0 is the typical initial length
scale.

Being initially at rest, the fluid ball of size r0 tends to fall towards the center
due to its own gravitation. The energy density increases, and so does the pres-
sure, which tries to halt the collapse. Evans and Coleman numerically evolved
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the system described in the previous subsection with κ = 1/3 and found the
following situation: For η < η∗, with η∗ � 1.0188, pressure effects are able to
stop and reverse the collapse, while for η > η∗ a black hole is always formed. For
values close to η∗ a strong, ingoing rarefaction wave with radius R(t) is formed,
separating an interior region where matter is still falling in from an exterior re-
gion where matter is expanding. The rarefaction wave chases the ingoing matter,
so that the total massM [R(t)] in the interior region decreases in time. For η � η∗
evolutions the dimensionless combination M [R(t)]/R(t) is almost constant and
the system becomes self-similar near the center, at very small scales compared
with the initial r0.

Self-similarity means that both the metric functions a, α and the fluid vari-
ables r2�, V are functions of r/t, with a suitable choice of origin of time. This
has important consequences for the system, as we will see later. This self-similar
regime is only an intermediate state and eventually the rarefaction wave removes
all the matter, leaving an almost empty region at the center (η < η∗, subcriti-
cal evolution) or, on the contrary, it is unable to do it and a small black hole is
formed at the center with the matter which is still falling in (η > η∗, supercritical
evolution). Only for η = η∗ (critical evolution) the self-similar regime continues
until the rarefaction wave hits the center forming a zero mass singularity there,
which can be shown to be naked.

Evans and Coleman [5] found that, for slightly supercritical evolutions, the
mass M(η) of the black hole formed starting from the initial condition given by
η obeys the following power law

M(η) = C(η − η∗)β , β � 0.36 . (9)

It is possible to show that this power law holds for any family of initial condi-
tions interpolating between fluid dispersion and black hole formation, and the
most striking fact is that the exponent β is the same for every family of initial
conditions (while C depends on the family). This phenomenon is now referred
to as universality. The value 0.36 was surprisingly close to the 0.37 measured
by Choptuik in the collapse of massless scalar field, or the 0.36 measured by
Abrahams and Evans [6] in the collapse of axisymmetric gravitational waves.
Maison [7] has shown that for a perfect fluid with p = κ� the exponent β de-
pends strongly on κ, so that the conclusion is that universality holds within a
given matter model, but not among different matter models.

2.3 Self-similarity and the Critical Spacetime

Universality was not only found in the critical exponent β. The profile adopted
by the metric and fluid variables in the self-similar regime was always the same,
which strongly suggested the existence of an exact solution of the equations with
the exact symmetry of self-similarity. The intermediate self-similar regime could
then be easily understood as an approach in phase space to that exact solution
with an eventual departure from it. Evans and Coleman were able to construct
that exact solution and showed that the profiles observed in the nonlinear time
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evolutions coincided remarkably well with it, confirming the relevance of that
solution in the process of critical collapse. In this subsection we construct nu-
merically that exact self-similar spacetime.

Geometrically a spherically symmetric spacetime is self-similar (technically
continuously self-similar) if it has a homothetic Killing vector field ξ, such that

Lξgμν = −2gμν . (10)

For nontrivial spacetimes, this implies the existence of a singularity at the center
at a certain moment of time, the point where all the integral curves of ξ converge.
Using polar-radial coordinates, this vector will be

ξ = −t∂t − r∂r , (11)

assuming that the singularity is at t = r = 0.
It is convenient to define the following new set of coordinates adapted to

self-similarity:

τ ≡ − log
(−t
t0

)
, x ≡ log

(
r

−t

)
, (12)

valid in the region r ≥ 0, t < 0, such that the homothetic vector is now ξ = ∂τ .
The signs have been chosen so that both t and τ increase to the future, and t0
is an arbitrary positive constant setting a global scale in the system. Note that
the coordinate x is invariant under scale changes in spacetime, while τ is not. In
other words, x labels the integral curves of ξ, while τ is a parameter on them.
Using these coordinates, the self-similarity condition of the metric translates into
the requirement of the metric functions α, a being independent of τ . Using the
Einstein equations, the fluid variables r2� and V are then also functions of x.

Following Koike, Hara and Adachi [8], we define the following variables

N ≡ α

aex
, A ≡ a2 , ω ≡ 4πa2r2� (13)

such that the evolution equations in self-similar coordinates are autonomous:

N,x
N

− (κ− 1)ω + 2−A = 0 , (14a)

A,x
A
− 1 + κV 2

1− V 2 2ω − 1 +A = 0 , (14b)

ω,τ
ω

+ (1 +NV )
ω,x
ω

+
1 + κ

1− V 2 [V V,τ + (N + V )V,x]

+
NV

2
[(κ+ 3)A+ (κ− 1)(3 + 2ω)] = 0 , (14c)

1 + κ
1− V 2 [V,τ + (1 +NV )V,x] + κV

ω,τ
ω

+ κ(N + V )
ω,x
ω

+
N

2
[−1− 7κ+ (1 + 3κ)A+ 2(κ− 1)κω] = 0 . (14d)

The imposition of self-similarity eliminates the τ -derivative terms and we are
left with a system of ODEs that can be easily integrated using the following
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Fig. 1. Evans and Coleman spacetime. A(x) (continuous line), log N(x) (dotted line),
ω (short-dashed line) and V (long-dashed line). Note that A(x → ∞) > 1 because this
spacetime is not asymptotically flat

initial/boundary conditions. Given that we are looking for a solution which is
arbitrarily approached by smooth initial conditions, we must require analyticity
on every spacelike slice, before the formation of the singularity. In particular
we will have a regular center (A = 1 and V = 0 at r = 0). On the other
hand the equations contain a regular singular point x0, physically representing
a sonic point: particles at x0 move outwards with velocity cs with respect to
constant x observers and therefore cannot send sound signals to those observers
with x < x0. In other words, x0 is the past sound cone of the singularity. We
use the gauge freedom in α, or equivalently in N , to fix x0 = 0. Expanding
in power series around x = 0 we see that there is a single free parameter, say
V (x = 0) ≡ V0, in the initial condition. Finally the regularity conditions at the
center give a discrete set of values for V0.

Using a bisection search for V0 and shooting from the sound cone to the
center it is possible to find that the critical spacetime is that with V0 � 0.112 439.
Integrating then outwards from the sound cone we get the rest of the spacetime.
The profiles are those given in Fig. 1. In Fig. 2 the corresponding fluid worldlines
are represented in t, r coordinates.

2.4 Perturbation Theory and the Critical Exponent

Evans and Coleman suggested that the critical exponent β could be understood
in terms of the linearized evolution around the critical spacetime. The actual
calculation was carried out by Koike, Hara and Adachi [8] and is reviewed in
this subsection.

The important point is the realization that the whole phenomenology of crit-
ical collapse can be qualitatively understood in Fig. 3, representing a schematic
picture of the phase space of the system. In that infinite-dimensional space a
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Fig. 2. Fluid world lines in coordinates (t, r) in the Evans and Coleman spacetime.
The dashed line gives the points x � −0.252 787 where V = 0. The continuous thin
straight line x = 0 gives the sonic point (the past sound cone of the singularity). The
continuous thick line x � 1.357 941 gives the past light cone of the singularity
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Fig. 3. Schematic picture of phase space around the critical solution, here called Chop-
tuik spacetime. Very close initial conditions bifurcate and give very different final re-
sults: a black hole (supercritical evolution), flat space (subcritical evolution) or a naked
singularity (critical evolution)

point represents an instantaneous state of the system, that is the set of func-
tions Z ≡ {N,A, ω, V } of x at a certain time τ . A generic full spacetime is given
by a trajectory on phase space.

There are only three possible stable end states for the system: a static star, a
Schwarzschild black hole or vacuum spacetime, the only three global attractors
in the system. Each of them has its own basin of attraction, with codimension-1
boundaries among them (the so-called “critical surfaces”), and here we concen-
trate on the boundary between black hole collapse and dispersion. The main idea
is that the critical spacetime Z∗ sits on that boundary and acts as an attractor
within it, and therefore as a codimension-1 attractor in phase space.
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We expand the solution with initial condition given by η, to linear order
around Z∗, as:

Z(τ, x; η) � Z∗(x) +
∞∑
n=0

Cn(η)eλnτZn(x) (15)

where the Zn are the eigenstates of the linearized evolution equations, with λn
as eigenvalues, and the Cn are free constants which depend in a complicated way
on the initial data. Codimension 1 means that there is a single mode (say Z0)
with positive real part eigenvalue:

�(λ0) > 0 , �(λn≥1) ≤ 0 . (16)

Actually, because the eigenvalues must form complex conjugate pairs, uniqueness
of the unstable mode implies that λ0 must be real. As τ increases all the per-
turbations vanish, except for the unstable mode, so that the information in the
Cn≥1 is washed out. In the following we consider this limit, and retain only the
growing perturbation. By definition the critical solution corresponds to η = η∗,
so we must have C0(η∗) = 0. Linearizing around η∗ we obtain

lim
τ→∞Z(τ, x; η) � Z∗(x) +

dC0

dη

∣∣∣∣
η∗

(η − η∗)eλ0τZ0(x) . (17)

The solution has this approximate form over a range of τ (infinite if perfect
fine-tuning of η were possible). In this range, all that is left of the information
contained in the family of initial conditions {Cn(η)}∞

n=0 is the single number
(η− η∗)K, with K ≡ C ′

0(η∗). The later evolution of the system is determined by
that number.

At sufficiently large τ , the linear perturbation has grown so much that the
linear approximation breaks down. Later on a black hole forms. The crucial point
is that we need not follow this evolution in detail to get the mass of the black
hole: we can find it with a simple dimensional argument. Choose an arbitrary
time τ∗ within the linear regime, that is such that

ε ≡ (η − η∗)Keλ0τ∗  1 (18)

for those values of η that we are interested in. The spacetime is at that time

Z(τ∗, x) � Z∗(x) + εZ0(x) = Z∗

(
log

r

−t∗

)
+ εZ0

(
log

r

−t∗

)
, (19)

with
t∗ ≡ −t0 e−τ∗ . (20)

There are two free parameters, ε and (−t∗). Again, we know that a Schwarzschild
black hole forms later, with a single free parameter: its mass M , with dimension
of length. Clearly M must be given by ε and (−t∗), and because the first is
dimensionless and the second has length dimension, we must have:

M(ε, t∗) = (−t∗)f(ε) = (−t∗)f
[
(η − η∗)K

(
t0
−t∗

)λ0
]
. (21)
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Finally, using the fact that t∗ is arbitrary and therefore M must be independent
of it, we get that the function f must be a power law:

f(y) = c y1/λ0 , (22)

and then
M(η) = ct0K1/λ0 (η − η∗)1/λ0 , (23)

which is (9) with β = 1/λ0.
The actual calculation of the exponent λ0 for κ = 1/3 was carried out by

Koike, Hara and Adachi [8] by linearizing (7a-7d) around the Evans and Cole-
man spacetime and solving a linear eigenvalue problem for the mode Z0. The
associated mode is λ0 � 2.810 553, giving β � 0.355 802, in good agreement with
the observed 0.36.

3 Angular Momentum in Critical Fluid Collapse

After studying critical phenomena in spherical symmetry it is obvious to ask
whether they are just a consequence of the high degree of symmetry of the
system or, on the contrary, they are a generic feature of any relativistic self-
gravitating system.

We know for example that typical nonspherical processes of collapse in Astro-
physics usually produce rapidly rotating compact objects, with large centrifugal
forces acting on them. Is that the case as well for near-critical collapse? Would
those centrifugal forces prevent the formation of naked singularities?

The numerical evolution in time of the nonlinear equations of motion of a
self-gravitating fluid is a nontrivial task, and without the restriction to spherical
symmetry it becomes highly demanding of computer resources. Several clever
and powerful methods have been devised to tackle the problem (mainly concern-
ing the fluid part), but none of them is currently able to cope with a generic
situation.

Critical phenomena are a result of the strong gravitational coupling regime
(we generate arbitrarily high curvatures near the singularity) and involve ultra-
relativistic states for the matter. Furthermore they develop structure at arbitrar-
ily small scales in the system, which must be resolved with some kind of dynamic
regridding process. Only a code able to deal with those three kinds of problems
can properly study the relevance of angular momentum for critical collapse.

Fortunately, we have seen that Critical Phenomena can be studied (at least
locally in phase space) using linear perturbation theory. That is, we have to
check whether a potential candidate to be a critical spacetime is a codimension-
1 attractor in phase space, but now including all nonspherical perturbations in
the game. This cannot be an exhaustive way of studying the problem because we
must know in advance the candidate spacetime, instead of letting the nonlinear
code to find it. Therefore, we can only hope to find critical solutions among those
spacetimes which are already critical in spherical symmetry.

In this section we show that the Evans and Coleman spacetime is actually
a critical solution in the general situation for a certain range of values of κ.
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We start by reviewing the Gerlach and Sengupta [9] formalism of nonspherical
perturbations and the equations derived from it. We then present the results,
and finish with the description of angular momentum scaling and the prediction
[10] of interesting new phenomena that will happen for small values of κ.

3.1 Nonspherical Perturbations

Given a spherical spacetime with its metric gμν(x) expressed in the form (5), we
introduce a perturbed spacetime with metric

gμν(x) + hμν(x) , (24)

where h is arbitrary but assumed to be small (in some sense) in comparison with
g, so that we can neglect quadratic terms in h. Under these circumstances h can
be considered as a tensor field living on the background spacetime. That is, hμν
is a nonspherical tensor on a spherically symmetric background.

In 1979 Gerlach and Sengupta [9] presented a new formalism for nonspherical
perturbations combining three key ideas:

• Following Regge and Wheeler [11], the angular dependence of the 10 func-
tions in hμν can be decomposed in series of spherical tensor harmonics. The
coefficients (labelled by l,m) are functions of the coordinates in M2. Due
to the additional symmetry of parity, those 10 coefficients can be separated
into two groups: 7 of them are polar and the other 3 are axial.

• This expansion can be done in geometrical terms on the reduced spacetime
M2, that is, without imposing particular coordinates on M2. For a given
l,m the polar variables are a symmetric 2-tensor hAB , a vector hpolar

B and
two scalars K and G. The axial variables are a vector haxial

B and a scalar h.
• The coordinate freedom on the perturbed spacetime (which is different from

and independent of the coordinate freedom on the background) yields 4
gauge freedoms among the 10 functions in h. These gauge freedoms can be
used to impose 4 conditions on the metric. However, following Moncrief [12],
Gerlach and Sengupta construct 6 linear combinations of the 10 variables
which are invariant under the 4 coordinate changes in the perturbed space-
time. Finally we have 4 polar variables describing the polar gravitational
wave: a tensor kAB and a scalar k, and 2 axial variables describing the axial
gravitational wave: a vector kA.

The same construction can be done for the fluid variables, and there we get 3
perturbations of the fluid velocity: γ (polar radial perturbation), α (polar tan-
gential) and β (axial tangential); and the perturbation δ� of the energy density
field. γ and δ� describe the polar sound wave degree of the fluid.

By linearizing the Einstein equations and the fluid equations of motion we
can get the equations for the perturbations. As usual, the detailed equations of
linear perturbation theory in general relativity are straightforward but lengthy.
We just sketch the form of the equations [13,14]:
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In the axial case β is just transported along the fluid worldline, decoupled
from the gravitational wave kA. However, the latter obeys a wave equation with
β as a source, so that the gravitational wave is driven by the fluid perturbation:

β̇ + (...)β′ = 0 , (25)
−Π̈ +Π ′′ + (...)Π ′ + (...)Π = (...)β′ + (...)β , (26)

where Π is the rotational of kA and the (...) terms denote background quantities.
Dots and primes denote time and radial derivatives in the comoving frame. For
l = 1 the wave equation degenerates to an algebraic equation, reflecting the fact
that we cannot have an l = 1 gravitational wave.

In the l ≥ 2 polar case we can express the matter perturbations α, γ, δ�
as radial derivatives of the metric perturbations (rewritten in terms of three
variables k, χ, ψ), which in turn obey a closed set of linear evolution equations:
a wave equation for the gravitational wave χ, a wave equation for the ‘sound
wave’ k and a transport equation for the tangential perturbation ψ:

−χ̈+ χ′′ + (...)ψ′ = ... , (27a)
−k̈ + c2sk

′′ + (...)ψ′ = ... , (27b)
ψ̇ = ... . (27c)

Again, the cases l = 0 and l = 1 must be treated separately because they do not
contain gravitational freedom.

3.2 Results

This is a brief summary of [15].
The transport equation (25) is simple enough so that we can analytically

find the spectrum of β perturbations on a self-similar background: The n-th
perturbation mode for the problem corresponding to the harmonic l is

λln =
2(1− 3κ)− (1 + 3κ)(l + 2n)

3(1 + κ)
, (28)

which is linear in l+ 2n. From this formula we can read off that all l ≥ 2 modes
decay for all κ in the range 0 < κ < 1. All l = 1 modes also decay for κ > 1/9,
but for κ < 1/9 there is exactly one growing l = 1 mode (the n = 0 mode). As
we will see, that mode is relevant for angular momentum scaling. Its associated
eigenvalue is:

λ1
0 =

1− 9κ
3(1 + κ)

. (29)

For l = 1 the metric perturbation Π is obtained as a quadrature over β, and
therefore it has the same spectrum. But for l ≥ 2 it obeys a wave equation and
therefore the spectrum of Π is given as the union of the spectrum of β and that
obtained from the homogeneous wave equation. It is possible to show numerically
that in that second part of the spectrum there is an unstable l = 2 mode in the
range 0.58 < κ < 0.87, while every l ≥ 3 mode decays.



Critical Phenomena in Gravitational Collapse 79

The polar perturbations must be analyzed numerically as well, and this turns
out to be a nontrivial problem because of the coupling of the two wave equations
(27a) and (27b) with very different characteristics (the speed of light and the
speed of sound, respectively). The l = 2 perturbations become unstable for
κ > 0.49, but all l = 1 and l ≥ 3 perturbations decay. Of course there is always
a polar unstable l = 0 mode, responsible for the critical phenomenology.

Therefore we conclude that in the range 1/9 < κ < 0.49 (an interval remark-
ably well centered on the physical value 1/3) the Evans and Coleman spacetime
for that κ value is a codimension-1 solution, and therefore critical phenomena
will be present in that range, at least for slightly nonspherical, near critical col-
lapse processes. In the following subsection we will review the consequences that
the instability of the axial dipole mode l = 1 brings for κ < 1/9. The meaning
of the l = 2 instabilities for κ > 0.49 is not known to us.

3.3 Angular Momentum Scaling and Scaling Functions

A slowly rotating Kerr black hole can be approximately considered as an axial
l = 1 perturbation of a Schwarzschild black hole. Therefore, in order to find the
scaling law of the angular momentum, we must include the l = 1 modes in the
argument of Sect. 2.4.

Suppose that now we start from a 4-parameter (η, q) family of initial condi-
tions, such that if q = 0, they are spherically symmetric and again, for q = 0 the
value η∗ signals the black hole threshold. We assume that q introduces a small
amount of angular momentum in the initial condition, such that if a black hole is
formed, it will have some angular momentum L(η, q), with L(η,−q) = −L(η, q).
We are interested in the scaling properties of L with respect to both η and q
near criticality (η = η∗, q = 0).

If we restrict ourselves to κ < 0.49, the axial l = 1 modes are either unsta-
ble or the most slowly decaying modes, apart from the unstable l = 0 mode.
Therefore, taking into account that those modes are threefold degenerate, we
can expand around criticality by neglecting the l ≥ 2 terms:

Z(τ, x,Ω; η, q) � Z∗(x) +
∞∑
n=0

Cn(η)Zn(x)eλnτ

+
∞∑
n=0

Dn(η, q) ·Zn(x,Ω)eλ
1
nτ , (30)

where the second expansion is associated with axial l = 1 perturbations. Ω
denotes the angular dependence. Again, for high enough τ we can neglect all the
nondominant terms in the summations and expand both in η − η∗ and q:

lim
τ→∞Z(τ, x,Ω; η, q) � Z∗(x) +K(η − η∗)Z0(x)eλ0τ

+q ·K ·Z0(x,Ω)eλ
1
0τ . (31)

Note that K ≡ ∂qD0(η∗,0) is a Jacobian matrix and again K ≡ C ′
0(η∗). We

assume that if λ1
0 is complex, the l = 1 term in the previous equation also contains
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the contribution of the complex conjugated mode. We choose an arbitrary time
τ∗ within the linear regime, that is such that

ε ≡ (η − η∗)Keλ0τ∗ , (32)

δ ≡ q ·Keλ
1
0τ∗ (33)

are very small. The spacetime is at time τ∗:

Z(τ∗, x,Ω) � Z∗(x) + εZ0(x) + δ ·Z0(x,Ω) , (34)

and therefore the mass and angular momentum of the black hole produced later
on must be given as functions of (t∗, ε, δ), where t∗ was defined in (20). By
dimensional analysis

M = (−t∗)f(ε, δ) , L = t∗2 g(ε, δ) , (35)

and requiring the results to be independent of t∗ we get that the functions f
and g are power-laws in ε times functions of the combination δ/ελ

1
0/λ0 :

M = (η − η∗)1/λ0F

[
q

(η − η∗)λ1
0/λ0

]
, (36)

L = (η − η∗)2/λ0G

[
q

(η − η∗)λ1
0/λ0

]
. (37)

with F and G universal scaling functions within the model under study. Note
that F (−y) = F (y), and then F (0) is a constant, while G(−y) = −G(y), so
that G(0) = 0.

If �(λ1
0) < 0 (stable l = 1 modes) the critical regime always corresponds to

very small arguments of the functions F and G. We get the scalings

M = c(η − η∗)β , β ≡ 1
λ0
, (38)

L = c(η − η∗)μ , μ ≡ 2−�(λ1
0)

λ0
, (39)

irrespectively of the (nonzero) values of q. From (29) we have for κ = 1/3 that
λ1

0 = −1/2 and then

μ =
5
2
β = 0.889 505 . (40)

If �(λ1
0) > 0 (unstable l = 1 modes) the critical regime covers the whole range

of values for the argument of the scaling functions F and G, which can be used
for predictive purposes. It is particularly interesting to study the regime of very
large angular momentum. For example the question “do the addition of angular
momentum to a critical evolution produce a black hole or a vacuum region?”
has a universal answer, independent of the initial condition. It is likely that the
answer will be a vacuum region, as one would expect centrifugal forces to disrupt
data that already hover between collapse and dispersion. If that is the case and
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centrifugal forces can destroy slightly supercritical black holes, can we produce
very small black holes just by keeping fixed η and increasing the modulus of q?
Again the answer is universal for a given matter model and just depends on the
behaviour of the scaling functions for large values of their argument. See [10] for
a complete discussion of the possibilities.

4 The Einstein-Vlasov System

A very different way of studying the influence of angular momentum in critical
phenomena is to replace the fluid field as a matter model by an averaged ensemble
of particles. In this way it is possible to consider a situation where the individual
particles have angular momentum, but their global distribution and therefore the
spacetime are spherically symmetric. In order to simplify the problem we will
assume collisionless evolution (Vlasov matter), and therefore there is no reason
to expect obtaining the same results that hold for a fluid, even if we compare
massless particles with a radiation fluid, as we will do here.

4.1 Collisionless Matter

As in classical statistical mechanics we describe the state of a many-body system
with a positive distribution function over the phase space of the system. For
equivalent particles that do not directly interact with each other we can use a
distribution function f(xμ, pν) on the one-particle phase space, and in fact, if
they all have the same mass m, we can consider the distribution f as a function
f(xμ, pi). Greek indices denote the range 0-3 and Latin indices the range 1-3.

Noninteracting particles follow the geodesics of the spacetime, so that the
distribution function is just Lie-dragged along them, obeying the Vlasov equa-
tion:

pμ
∂f

∂xμ
− Γ iνλpνpλ

∂f

∂pi
= 0 . (41)

The spacetime is coupled to the matter through the Einstein equations, with

Tμν(x) =
∫
P (x)

dp3

−p0
√−g f(x, p)pμpν , (42)

where P (x) is the 3-momentum space at the point xμ and p0 is determined from
pi and the metric. The Vlasov equation is a sufficient condition for stress-energy
conservation.

If we impose spherical symmetry and use polar-radial coordinates to write
the metric as (6), the distribution function is just a function f(t, r, pt, pr), and
the Vlasov and Einstein equation are much simpler, but still a coupled system
of integro-differential equations in four independent variables.

The solutions of the Vlasov equation are formally arbitrary functions of the
constants of motion along particle trajectories. It is customary to introduce ad-
ditional symmetries in the system to find simple expressions for those constants
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of motion. For instance, the static solutions of the system have been intensively
studied, and several interesting theorems have been proved.

It is interesting to compare the Einstein-Vlasov system with its Newtonian
counterpart, the Poisson-Vlasov system, where the Einstein equations are re-
placed by the Poisson equation. It is then possible to show that, even though
there are always formally 4 different constants of motion along particle trajecto-
ries, any static solution of the Poisson-Vlasov system is just a function f(E,F ),
where E and F are the energy and squared angular momentum of the parti-
cles, respectively. This is the so-called Jeans theorem [16]. There are two types
of counterexamples to this theorem in General Relativity [17,18], as a reminder
that all the constants of motion can be important in the construction of solutions
of the Einstein-Vlasov system.

Because our goal is the study of criticality in the system, we now introduce
a new symmetry in the problem: self-similarity, instead of staticity, but always
keeping spherical symmetry.

4.2 Self-similar Solutions with Massless Particles

In this subsection we show numerically that there are self-similar solutions of the
spherically symmetric Einstein-Vlasov system with massless particles (potential
candidates for critical spacetimes in this system). Again, we only introduce the
main ideas because the equations are long and uninteresting. See [19] for a com-
plete exposition.

As we said previously, a self-similar spacetime has a homothetic Killing vector
ξμ. The homothetic energy

J ≡ −ξμpμ = tpt + rpr = −pτ (43)

is a constant of motion for massless particles. One can try to find solutions where
the distribution function is of the form f(J, F ), imitating the Jeans solutions
f(E,F ) of the static case. However this leads to a divergent stress-energy tensor.
The difference is that both E and F are explicitly independent of time in the
static case and therefore any function f is a valid solution. However J and F
are scale dependent, so that only a function of the dimensionless combination
J/
√
F is a valid solution and one of the multiple integrals in the energy-stress

tensor becomes divergent. If there are well defined solutions they must involve
the additional constants of motion [19].

We introduce the remaining constant of motion, called t0(t, r, pt, pr), repre-
senting the time when the particle at t, r with pt, pr was at a certain canonical
position. Of course this depends on the trajectory joining both points, so that
t0 does not have a local expression in terms of its variables. This will intro-
duce another integration, in a system which is already integro-differential. The
interesting point is that, due to the high symmetry of the system, we can clas-
sify in advance the possible trajectories of the particles, which gives us enough
information about t0 to solve the equations numerically.
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Using dimensional analysis and requiring the right scaling for the Tμν , a
self-similar solution will have the form

f(t, r, pt, pr) = g(t0, J, F ) =
1
F
k

(
J√
F
,
F

t20

)
, (44)

where the arguments of the function k are scale invariant. Defining the function

k̄(Y ) ≡
∫ ∞

0
k(Y,Z)dZ , (45)

it is possible to show that the energy-stress tensor t2Tμν(x), where x is the self-
similar variable r/(−t), is an integral transform of k̄(Y ) with some complicated
kernel K(x, Y ). It is then clear that if we had a function k independent of Z,
the function k̄ would diverge for every Y .

Using the constraint Einstein equations we end up with a set of integro-
differential equations of the form

Dxg(x) =
∫ ∞

−∞
dY K(x, Y ; g)k̄(Y ) , (46)

where Dx is a differential operator, g represents both metric functions a, α, and
the kernel K depends nonlocally on g. For a given fluid distribution k̄(Y ) they
can be solved numerically by iteration

Dxg
(n+1)(x) ≡

∫ ∞

−∞
dY K

(
x, Y ; g(n)

)
k̄(Y ) , (47)

starting from a given initial metric g(0), typically a flat spacetime. If the exact
solution is very far from Minkowski it is more convenient to start from the metric
of Evans and Coleman solution. Figures 4 and 5 show the convergence process
for a Gaussian k̄ centered around Y = 6 with width σ = 1 and maximum value
of 10−4.

4.3 Relevance for Critical Phenomena

We have explicitly constructed a family of spherically symmetric, self-similar
solutions of the massless Einstein-Vlasov system that is parameterized by an
arbitrary function of two conserved quantities k(Y,Z). There is plenty of room
for potential candidates to be critical solutions. However, we have seen that
the spacetime only depends on the averaged function k̄(Y ). This is due to a
symmetry related to the fact that our particles are massless: we can change the
particle-number distribution and the energy-momentum of each particle without
changing the total energy-momentum distribution, and therefore without chang-
ing the spacetime. That explains why we can have several matter distributions
giving rise to the same spacetime. The same result is expected to hold for the
perturbations and therefore it is impossible to have a single unstable mode. We
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Fig. 4. Different iterations of the metric function a(x), starting with the flat case in
the iteration i = 0. The convergence is fast and starting from i = 3 or i = 4 it is not
possible to resolve different iterations in the figure
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Fig. 5. Decay of differences between successive iterations in Fig. 4. We have defined
Δia ≡ ai − ai−1. The continuous line represents the 2-norm and the dotted line the
∞-norm, both integrated between x = 0 and x = 2

either have none or an infinite family. Critical phenomena are not possible within
the massless Einstein-Vlasov system.

There are numerical simulations of the evolution of a self-gravitating Ein-
stein-Vlasov system, [20] and [21], but they evolve massive particles. The former
did not found any sign of critical phenomena, and in particular it was impossible
to form black holes of arbitrarily small mass. The latter reference found some
evidence of a different kind of critical phenomena, where a metastable static
(instead of self-similar) solution acts as an intermediate attractor at the black
hole threshold.

The mass of the particles introduces a scale in momentum space. Therefore,
we can not extend our arguments to the massive case because that symmetry
between different matter distributions is not valid anymore.
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5 Conclusions

The threshold of black hole formation is a very interesting area of research that
remains mostly unexplored apart from its restriction to spherical symmetry. It
involves many different disciplines: gravitational collapse and theory of singu-
larities, PDE asymptotics, general theory of dynamical systems, self-similarity
and scaling, numerical relativity, etc, and therefore benefits from the exchange of
ideas and methods among those disciplines. An example of this is the prediction
of scaling functions in the process of collapse, the same kind of scaling functions
that are so important in condensed matter physics.

We have reviewed some current ideas and results on Critical Phenomena with
matter systems involving angular momentum. Within the perfect fluid model
with equation of state p = κ�, and using linear perturbation theory, we predict
that there will be a critical regime for generic slightly nonspherical collapse,
dominated by the Evans and Coleman solution for 0 < κ < 0.49. In particular we
predict the critical exponent associated to the angular momentum of the black
holes formed in near critical evolutions: μ � 0.889 for κ = 1/3. This result,
together with a parallel result for the scalar field system [13] (with exponent
μ � 0.762) and the work by Abraham and Evans on collapse of axisymmetric
waves, strongly suggest that critical phenomena are a generic feature in General
Relativity. Those predictions must of course be confirmed in nonlinear numerical
evolutions.

If we include angular momentum using a statistical description for the mat-
ter, instead of a usual local field theory, we find that critical phenomena are not
always allowed, or at least not the kind of critical phenomena that we have stud-
ied here. Nonlinear evolutions seem to support that view. It is not clear whether
this is an intrinsic problem associated to the statistical description (which con-
tains far more degrees of freedom than a field theory), or whether it is associated
with the collisionless approximation, which certainly must fail in the last stages
of a collapse process.
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13. J.M. Mart́ın-Garćıa, C. Gundlach: Phys. Rev. D59, 064031 (1999)



86 J.M. Mart́ın-Garćıa and C. Gundlach
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Abstract. In this chapter the theory of non-rotating perfect fluid stellar adiabatic
perturbations is derived in a similar way to black hole perturbations. In that case a
wave equation can be obtained only for the axial perturbations. Whereas for black
holes quasi-normal modes are purely gravitational, the modes of oscillation of stars are
due to the coupling between the fluid and the gravitational field. This means that the
emitted radiation carries information on the structure of the source.

1 Introduction

In this chapter I will show how the theory of non radial perturbations of non
rotating stars can be developed along the same lines of the theory of black hole
perturbations. Black holes are the simplest astrophysical objects, a curvature
singularity hidden by a horizon, and are completely described by the metric
tensor. Stars are much more complex objects, since they are composed of a fluid
which obeys an assigned equation of state (EOS).

Thus, the structure of the spacetime generated by a star and its dynamical
behaviour under a small perturbation has to be found by solving the Einstein
equations coupled to the equations of Hydrodynamics. Due to the variety of
models of stars existing in nature or proposed by theoretical investigations, the
field is so wide that we need to limit our analysis to a restricted domain. In this
chapter I will focus on the study of non-rotating stars that are composed by
perfect fluids and I will consider only adiabatic perturbations, in which changes
in the pressure and in the energy density arise without dissipation.

When stars or black holes are perturbed, they are set into non-radial oscilla-
tions and emit gravitational waves at the characteristic frequencies and damp-
ing times of the quasi-normal modes (QNMs). For black holes, these modes are
purely gravitational, because the information on the detailed structure of the
original star is radiated away during the gravitational collapse and only essential
parameters like mass and angular momentum eventually identify the newborn
collapsed object.

Conversely, the modes of oscillation of stars are due to the coupling between
the fluid and the gravitational field and consequently the emitted radiation carry
information on the structure of the source and on the manner in which the
gravitational field couples to matter.

In addition, we will see that the QNM-spectrum of a star in General Rela-
tivity has a very rich structure and that there exist modes of the radiative field
that do not have a newtonian counterpart.
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Stellar pulsations have a central role in astrophysics. For instance, they are
observed in the Sun and the corresponding frequencies, measured with very high
accuracy, are used in modern heliosysmology to investigate the internal structure
of our star.

Non-radial pulsations are thought to be at the origin of the drifting subpulses
and micropulses detected in some radio sources and of the quasi-periodic vari-
ability seen in some X-ray burst sources and in a number of bright X-ray sources
[1]. For this reason, much effort has been put in computing the frequencies of
the quasi-normal modes for different stellar models.

A first formulation of the theory of stellar perturbations in General Relativity
was developed in 1967 by K. Thorne and his collaborators [2] and the first mode
calculations date back to 1969 [3]; in 1983 Detweiler and Lindblom tabulated the
real and the imaginary part of the first characteristic frequencies for � = 2 for a
wide range of stellar models (13 equations of state in the supranuclear density
regime) [4]. This work has been extended recently by Andersson and Kokkotas
[5]. I will briefly summarize the results in Sect. 3.

A new interest in the subject of stellar perturbations was stimulated by
some work that S. Chandrasekhar and I did in the early nineties; we proposed a
formulation of the theory, which allowed to shed a new light onto the problem and
allowed the discovery of new sets of modes [6,7,8,9,10,11,12]. In the following of
this chapter, I will describe the theory of stellar perturbations in the formulation
that I contributed to develop. I shall make use of many equations already written
in describing the perturbations of non-rotating black holes.

2 The Perturbations of a Non-rotating Star

The metric g0μν which describes the unperturbed star, is assumed to be static
and spherically symmetric

ds2 = e2ν(dt)2 − e2μ2(dr)2 − r2(dθ2 + sin2 θdϕ2) . (1)

Inside the star, the functions ν(r) and μ2(r) can be determined by solving the
equations of hydrostatic equilibrium. We shall consider a star composed by a
perfect fluid, whose energy-momentum tensor is given by

Tαβ = (p+ ε)uαuβ − pgαβ , (2)

where p and ε are respectively the pressure and the energy density, that are
assumed to have an isotropical distribution, and uα is the four-velocity of the
fluid. By defining the mass contained inside a sphere of radius r as

m(r) = 4π
∫ r

0
εr2dr , (3)

the relevant equations which describe the equilibrium configuration are

ν,r = − p,r
p+ ε

, (4)[
1− 2m(r)

r

]
p,r = −(ε+ p)

[
pr +

m(r)
r2

]
, (5)
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and e2μ2 = (1 − 2m(r)/r)−1. When the equation of state (EOS) of the fluid
is specified, these equations can be solved numerically and the distribution of
pressure and energy-density through the star can be determined. Once ε and p
are known, (4) can be integrated

ν = −
∫ r

0

p,r
(ε+ p)

dr + ν0 . (6)

The constant ν0 is determined by the condition that at the boundary of the star
the metric reduces to the Schwarzschild metric, i.e.

(e2ν)r=R = (e−2μ2)r=R = 1− 2M
R
, (7)

where M = m(R) is the total mass. We shall now consider small perturbations
of g0μν

gμν = g0μν + hμν , |hμν |  |g0μν | .
Inside the star we shall perturb the Einstein equations coupled to the equations
of Hydrodynamics

δGμν(hμν) =
8πG
c4
δTμν , δ [Tμν ;ν ] = 0 .

The perturbed stress-energy tensor of the fluid is given by

δTik = (ε+ p)uiδuk + (ε+ p)ukδui + (δε+ δp)uiuk − δpgik − phik , (8)

where δu = ξ,t and ξ is the Lagrangian displacement of the perturbed fluid
element. δp and δε are the perturbations of the pressure and of the energy-
density.

Both hμν and δTμν will be expanded in tensor harmonics as described in
Chap. 2, Sect. 2. We shall make the same choice of gauge, i.e. the perturbed
metric tensor will be written as in Chap. 2, (6) and (7). The explicit expression
of δTμν expanded in harmonics is given in the Appendix.

2.1 The Axial Equations

The equations we need to solve (to be compared to (8) in Chap. 2) are

δGϑϕ =
8πG
c4
δTϑϕ :

sinϑ
2

(
∂2
ϑ − cotϑ∂ϑ −

1
sinϑ2 ∂ϕ2

)
Y�m(ϑ, ϕ)

{
−iωe−2νhax

0 − e−2μ2
[
hax

1,r + (ν − μ2),rhax
1
]}

=
8πG
c4
δTϑϕ

δGrϑ =
8πG
c4
δTrϑ : − 1

2 sinϑ
∂ϕY�m(ϑ, ϕ)

{
e−2ν

[
ω2hax

0 − iω
(
hax

0,r −
2
r
hax

0

)]
−2n
r2
hax

1 − 2e−2μ2hax
1

[
ν,rr +

(
1
r

+ ν,r

)
(ν − μ2),r

]}
=

8πG
c4
δTrϑ .
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It is easy to see that

δTϑϕ = δ[(ε+ p)uϑuϕ − pgϑϕ] = 0 ,

because in the unperturbed regime only ut �= 0; in addition

8πG
c4
δTrϑ =

1
2 sinϑ

∂ϕY�m(ϑ, ϕ)
8πG
c4

(2p h1) .

The equilibrium equations Gϑϑ = 8πGTϑϑ/c4 gives

ν,rr +
(

1
r

+ ν,r

)
(ν − μ2),r =

8πG
c4
p e2μ2 ,

and by direct substitution into the axial equations, we find

−iωe−2νhax
0 − e−2μ2

[
hax

1,r + (ν − μ2),rhax
1
]

= 0 ,

e−2ν
[
−iω

(
hax

0,r −
2
r
hax

0

)
+ ω2hax

1

]
− 2n
r2
hax

1 = 0 , (9)

that are formally the same as (9), which we derived in Chap. 2 for black holes.
Thus, the axial perturbations do not excite fluid pulsations and, as for black
holes, they are perturbations of the gravitational field only. But there is a differ-
ence: now the unperturbed metric functions ν and μ2 have to be found by solving
the equations of hydrostatic equilibrium for the star, for an assigned EOS. This
means that ν and μ2 will be related to ε and p.

2.2 A Schrödinger Equation for the Axial Perturbations

By using the same procedure as in the case of black holes, and introducing the
same function Zax

Zax(ω, r) = eν−μ2
hax

1 (ω, r)
r

,

it is easy to reduce the axial equations (9) to a single wave equation with a
potential barrier [7]

d2Zax

dr2∗
+ [ω2 − V ax

� (r)]Zax = 0 ,

V ax(r) =
e2ν

r3
[�(�+ 1)r + r3(ε− p)− 6m(r)] , (10)

where r∗ =
∫ r
0 e−ν+μ2 dr . It is remarkable that the potential barrier, which

depends only on the mass in the case of a Schwarzschild black holes, now depends
on how the energy-density and the pressure are distributed inside the star in the
equilibrium configuration. The asymptotic behaviour of the solution of (10) at
radial infinity is

Zax → +
{
α− βn+ 1

ωr
− 1

2ω2 [n(n+ 1)α− 3Mωβ]
1
r2

+ ...
}

cosωr∗

−
{
β + α

n+ 1
ωr

− 1
2ω2 [n(n+ 1)α+ 3Mωβ]

1
r2

+ ...
}

sinωr∗ . (11)
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In conclusion, the axial perturbations of stars and black holes are both de-
scribed by a Schrödinger like equation with a potential barrier, and therefore in
both cases an incident axial wave will experience a potential scattering; however,
there is a basic difference: the equation for a Schwarzschild black hole describes
a problem of scattering by a one-dimensional potential barrier defined in the in-
terval −∞ < r∗ < +∞, whereas in the case of a star it describes the scattering
by a central potential defined within 0 < r < +∞.

2.3 The Polar Equations

In analogy with the polar equations derived for a Schwarzschild black hole, the
relevant equations that describe the polar perturbations of a star can be written
in the following form

δGtr :
[

d
dr

+
(

1
r
− ν,r

)]
(2T − kV )− 2

r
L = −U

δGtϑ : T − V + L = −W

δGrϑ : (T − V +N)r −
(

1
r
− ν,r

)
N −

(
1
r

+ ν,r

)
L = 0

δGrr :
2
r
N,r +

(
1
r

+ ν,r

)
(2T − kV ),r −

2
r

(
1
r

+ 2ν,r

)
L

− 1
r2

(2nT + kN)e2μ2 + ω2e−2ν+2μ2(2T − kV ) = 2e2μ2Π

δGϑϑ − δGϕϕ
sin2 ϑ

: V,rr +
(

2
r

+ ν,r − μ2,r

)
Vr +

e2μ2

r2
(N + L)

+ω2e2μ2−2νV = 0
k = �(�+ 1) , 2n = k − 2 (12)

This set of equations is the same as that for black holes (Chap. 2, (10)) but on
the right hand side now there is the radial part of the variables that describe
the perturbed fluid; indeed, W,U are respectively the radial part of the ϑ− and
r− components of the lagrangian displacement, and Π refers to the variation of
the pressure (see Appendix). By a suitable manipulation of the hydrodynamical
equations the fluid variables can be written as

Π = −1
2
ω2e−2νW − (ε+ p)N , E = QΠ +

e−2μ2

2(ε+ p)
(ε,r −Qp,r)U ,

U =
[(ω2e−2νW ),r + (Q+ 1)ν,r(ω2e−2νW ) + 2(ε,r −Qp,r)N ](ε+ p)

[ω2e−2ν(ε+ p) + e−2μ2ν,r(ε,r −Qp,r)]
, (13)

where

Q =
(ε+ p)
γp

, γ =
(ε+ p)
p

(
∂p

∂ε

)
entropy=const

γ is the adiabatic exponent, and E is the radial part of δε. Equations (13) show
that the fluid variables [W,U,E,Π] can be expressed as a combination of the
metric perturbations [T, V, L,N ].
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Therefore, if we replace the expressions of U and Π on the right-hand side
of (12), we obtain a system of equations which involves only the perturbations of
the metric functions, with no reference to the motion of the fluid. This fact is
remarkable and it should be stressed that this decoupling requires no assump-
tions on the equation of state of the fluid. After eliminating the fluid variables
and introducing the new functions X and G instead of V and T , the final set of
equations involving only gravitational variables is

X,r,r +
(

2
r

+ ν,r − μ2,r

)
X,r +

n

r2
e2μ2(N + L) + ω2e2(μ2−ν)X = 0 ,

(r2G),r = nν,r(N − L) +
n

r
(e2μ2 − 1)(N + L) + r(ν,r − μ2,r)X,r

+ω2e2(μ2−ν)rX ,

−ν,rN,r = −G+ ν,r[X,r + ν,r(N − L)] +
1
r2

(e2μ2 − 1)(N − rX,r − r2G)

−e2μ2(ε+ p)N +
1
2
ω2e2(μ2−ν)

{
N + L+

r2

n
G+

1
n

[rX,r + (2n+ 1)X]
}
,

L,r(1−D) + L
[(

2
r
− ν,r

)
−
(

1
r

+ ν,r

)
D

]
+X,r +X

(
1
r
− ν,r

)
+DN,r +

+N
(
Dν,r −

D

r
− F

)
+
(

1
r

+ Eν,r

)[
N − L+

r2

n
G+

1
n

(rX,r +X)
]

= 0 ,(14)

where

A =
1
2
ω2e−2ν , B =

e−2μ2ν,r
2(ε+ p)

(ε,r −Qp,r) ,

D = 1− A

2(A+B)
, E = D(Q− 1)−Q , F =

ε,r −Qp,r
2(A+B)

,

and the definitions of X� and G� are

X = nV , (15)

G = ν,r

[
n+ 1
n
X − T

]
,r

+
1
r2

(e2μ2 − 1)[n(N + T ) +N ] +
ν,r
r

(N + L)−

−e2μ2(ε+ p)N +
1
2
ω2e2(μ2−ν)

[
L− T +

2n+ 1
n

X

]
. (16)

In order to integrate these equations numerically, we need to impose some bound-
ary conditions:

1. The lagrangian perturbation of the pressure must vanish at the boundary of
the star.

2. All functions must be regular at the center of the star where they behave as

(G,V, L,N) ∼ (G0, V0, L0, N0)rx + (G2, V2, L2, N2)r(x+2) +O
(
r(x+4)

)
. (17)
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The coefficients of the expansion and the exponent x can be found by direct
substitution of (17) into (14).

The system of equations (14) is a fifth order linear system, thus in principle
we expect five independent solutions for x, and five corresponding sets of val-
ues for the coefficients (G0, V0, L0, N0) and (G2, V2, L2, N2). However, only for
two coincident values of x the solution is regular at the origin. This value is
x = �, where � is the harmonic index expressing the order of the multipole we
are considering. Consequently there are only two independent solutions to be
numerically integrated, and the corresponding coefficients can easily be found.
The procedure of integration is the following: for a fixed value of the frequency ω,
integrate equations (14) for the two independent, regular solutions that behave
as in (17) near the origin. At the boundary, superimpose the solutions in such a
way that the lagrangian perturbation of the pressure vanishes. Outside the star
the perturbed equations reduce to the Schwarzschild equations, therefore, from
the values of the functions X = nV and L obtained in the interior (and their
derivatives) we compute the Zerilli function Zpol:

Zpol(ω, r) =
r

nr + 3M

[
3MV (ω, r)− rL(ω, r)

]
, (18)

and its first derivative, and then integrate the Zerilli equation

d2Zpol

dr2∗
+ [ω2 − V pol

� (r)]Zpol = 0 ,

V pol(r) =
2(r − 2M)
r4(nr + 3M)2

[n2(n+ 1)r3 + 3Mn2r2 + 9M2nr + 9M3] (19)

up to radial infinity. The asymptotic behaviour of the function Zpol for large r
is

Zax →
{
α− βn+ 1

ωr
− 1

2ω2

[
n(n+ 1)α− 3

2
Mβω

(
1 +

2
n

)]
1
r2

+ . . .
}

cosωr∗

−
{
β + α

n+ 1
ωr

− 1
2ω2

[
n(n+ 1)α+

3
2
Mβω

(
1 +

2
n

)]
1
r2

+ . . .
}

sinωr∗ , (20)

where α and β are functions of ω. In this way the complete solution is obtained.

3 The Quasi-normal Modes of a Star

The quasi-normal modes are solutions of the axial and polar equations that
satisfy the following boundary conditions:

1. They behave as a pure outgoing wave at infinity.
2. All perturbed functions have a regular behaviour at r = 0.
3. The interior solution matches continuously with the exterior perturbation at

the surface of the star.
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Before describing the many interesting properties of the QNM spectrum of a
star, let us see how these eigenfrequencies can be determined. We shall describe,
in particular, a method which is appropriate when the imaginary part of the
mode frequency is much smaller than the real part, i.e. for modes that are not
very strongly damped.

3.1 A Method to Find the Frequencies of the Quasi-normal Modes

Let us consider a Schrödinger equation

d2Zc
dr2∗

+ (ω2 − V )Zc = 0 , (21)

where V is a short-range, central potential barrier. We want to find the complex
values of the frequency, ωc = ω + iωi, such that the corresponding solution of
(21) is regular at r∗ = 0 and behaves as a pure outgoing wave at radial infinity,
i.e.

Zc ∼ e−iωcr∗ , when r∗ →∞ .

We shall assume that Zc = Z + iZi and that ωi  ω, i.e. the decay time of the
emission of gravitational waves, τ = 2π/ωi, is much longer than the pulsation
period.

This condition is certainly satisfied by lower modes, which are less damped
and therefore more significant from the observational point of view. By separat-
ing the real and the imaginary part in (21), we find

d2Z

dr2∗
− V Z + (ω2 − ω2

i )Z − 2ωωiZi = 0 , (22)

d2Zi
dr2∗

− V Zi + (ω2 − ω2
i )Zi + 2ωωiZ = 0 . (23)

If we now put Zi = ωiY , and neglect terms of order O(ω2
i ) in (22) and (23),

they become

d2Z

dr2∗
+ (ω2 − V )Z = 0 , (24)

d2Y

dr2∗
+ (ω2 − V )Y + 2ωZ = 0 . (25)

From (25) it follows that

Y (r∗, ω) =
∂

∂ω
Z(r∗, ω) , (26)

and consequently

Zc(r∗, ωc) = Z(r∗, ω) + iωi

[
∂

∂ω
Z(r∗, ω)

]
. (27)

Therefore when ωi  ω, we can construct the complex solution Zc corresponding
to a complex value of the frequency ωc, by integrating exclusively (24) for the
real part Z, and for real values of the frequency ω.
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The Asymptotic Behaviour of Zc. When r∗ →∞, the potential V tends to
zero and (24) admits two linearly independent solutions that have the following
asymptotic behaviour

Z1 → cosωr∗ +O(r−1
∗ ) , Z2 → sinωr∗ +O(r−1

∗ ) .

Thus the general real solution Z is

Z(r∗, ω) = α(ω)Z1(r∗, ω)− β(ω)Z2(r∗, ω) , (28)

where α(ω) and β(ω) are functions to be determined, for example, by matching
(28) with the solution (11) numerically integrated for different initially assigned
values of real ω. From (27) and (28) it follows that the complete solution for Zc,
up to terms of order O(ω2

i ) is

Zc = Z + iωi
∂Z

∂ω
= α(ω)Z1 − β(ω)Z2 − iωi[α′(ω)Z1 − β′(ω)Z2 + α(ω)Z ′

1 − β(ω)Z ′
2] , (29)

where the prime indicates differentiation with respect to ω. For sufficiently large
values of r∗ the behaviour of Zc is

Zc → (α+ ωiα
′ − iωiβr∗) cosωr∗ − (β + iωiβ′ − iωiαr∗) sinωr∗ . (30)

It is clear that the terms proportional to r∗ would eventually diverge if r∗ →∞.
However, in the limit ωi  ω, the asymptotic behaviour (28) that we use to
determine α and β is established long before these terms begin to dominate.

Therefore, if the value of r∗ where we start to match the numerically inte-
grated real solution Z with the asymptotic behaviour is large enough for (28) to
be applied, but not so far that the exponential growth has taken over in (30), the
diverging terms can be neglected and the asymptotic form of Zc can be written
as

Zc →
1
2
[(α− ωiβ′) + i(β + ωiα′)]eiωr∗ +

1
2
[(α+ ωiβ′)− i(β − ωiα′)]e−iωr∗

= I(ω)e+iωr∗ +O(ω)e−iωr∗ . (31)

(That such value of r∗ does indeed exist has been shown by a direct verification
in [10]). We now impose the outgoing wave condition, by setting to zero the
coefficient of the ingoing wave, I(ω), in (31)

α− ωiβ′ = 0 , and β + ωiα′ = 0 . (32)

Eliminating ωi we finally find

αα′ + ββ′ = 0 . (33)

This equation says that if there exists a value of real ω, say ω = ω0, where the
function (α2 +β2) has a minimum, then the solution Zc at infinity will represent
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a pure outgoing wave. Therefore ω0 is the real part of the complex characteristic
frequency belonging to a quasi-normal mode.

The imaginary part can be obtained from (32) evaluated at ω = ω0

ωi =
α

β′

∣∣∣∣
(ω=ω0)

= − β
α′

∣∣∣∣
(ω=ω0)

. (34)

Equation (34) suggests an alternative method to find ωi. Since the function (α2+
β2) has a minimum when ω = ω0, in the region ω ∼ ω0 it can be approximated
by a parabola

α2 + β2 = const.
[
(ω − ω0)2 + ω2

i

]
, (35)

and ωi can be determined by matching the values of (α2 + β2) obtained by
numerical integration, with (35).

The application of the algorithm we have described to the axial perturbations
is straightforward. We integrate the Schrödinger equation (10) for real values of
ω, for sufficiently large r∗ we match the integrated solution with the asymptotic
behaviour (11) and determine the values of α and β. Then we find the values
of ω = ω0 where the resonance curve (α2 + β2) has a minimum: ω0 will be the
real part of the eigenfrequency. The imaginary part will be found from (34), or
alternatively, by fitting the resonance curve with the parabola (35).

The same procedure can be applied in the case of the polar modes. The
difference with respect to the axial case is that inside the star we need to integrate
the system of equations (14) as described in Sect. 2.3. The purpose is to find the
value of the function Zpol at the boundary of the star (and its derivative), that is
needed to integrate the Schrödinger equation (19) outside the star. At sufficiently
large values of r∗, the integrated Zpol will be matched with the asymptotic
behaviour (20) and α and β will be determined. We shall then proceed as in the
axial case.

3.2 Spacetime Quasi-normal Modes

In Sects. 2.1-2.2 we have shown that the equations governing the axial pertur-
bations are not coupled to fluid pulsations and that they can be reduced to a
wave equation for the gravitational variable Zax: the role of the fluid is that
of determining the shape of the potential barrier, which explicitly depends on
the radial profile of the energy density and of the pressure in the unperturbed
star. Thus, the axial quasi-normal modes are pure gravitational modes and do
not have a newtonian counterpart. In order to show how the frequency of the
modes depends on the potential shape, it is interesting to consider the following
illustrative example.

As in [9] we shall consider a star with uniform density and increasing com-
pactness. Although this is an unrealistic model, it presents the advantage that
the equilibrium configuration is known as an exact solution of Einstein’s equa-
tions (the Schwarzschild solution). Moreover, in such models it is possible to
test the effects of general relativity in a regime where they are stronger than in
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Fig. 1. The potential barrier of the axial perturbations of homogeneous stars is plotted
for different values of the ratio R/M ranging from 2.8 to 2.26. The dashed lines are
the values of (ω0M)2 corresponding to the quasi-normal modes

any other stellar model. It should be reminded that homogeneous stars can exist
only if R/M > 2.25. The potential barrier of the axial perturbations is plotted
in Fig. 1 as a function of the radial coordinate, for different values of (R/M).
By integrating the axial equation, and applying the method described in Sect.
3.1, we find that if R/M is small enough ((R/M) <∼ 2.6) the curve α2 + β2 has
one or more minima, i.e. there exist one or more axial QMNs and the number
of modes increases as R/M approaches the limiting value.

The reason for this behaviour is that inside the star the potential is a well,
which becomes deeper as the value of (R/M) decreases and the compactness
increases; if the star is compact enough, the potential well becomes deep enough
to allow the existence of one or more QNMs. In Table 1 we show the frequency
of the lowest � = 2 quasi-normal mode for different values of (R/M). From these
data we see that there is a progressive increasing of the damping time τ = 2π/ωi
as the star tends to the limiting configuration R/M = 2.25. This means that
the lowest QNMs are effectively trapped by the potential barrier and no much
radiation will leak out of the star when these modes are excited.
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Table 1. The frequency of the lowest � = 2 axial quasi-normal mode of homogeneous
stars of different compactness. ( M and ω are measured in the units ε1/2 and ε−1/2)

(R/M) M ω0 ωi

2.26 0.509798 0.213863874 0.23 ·10−8

2.28 0.503105 0.3689962 0.12 ·10−5

2.30 0.496557 0.473525 0.26 ·10−4

2.40 0.465848 0.7767 0.92 ·10−2

Another family of axial quasi-normal modes are the so-called w-modes [13].
They are strongly damped modes, i.e. the imaginary part of the frequency is
comparable to the real part. These modes do exist also for the polar pertur-
bations [14]. It is interesting to compare the eigenfrequencies of the spacetime
modes of stars and black hole.

In Table 2 we give the frequencies and the damping times of the first four,
� = 2, axial quasi-normal modes of homogeneous stars with mass M = 1.35M�
and different values of R/M and of a non-rotating black hole with the same
mass.

We see that the frequencies and the damping times of the modes are higher
for a star than for a black hole and increase with the order of the mode rather
than decreasing. Even when the star approaches the limiting value R/M = 2.25,
its quasi-normal mode spectrum remains different from that of a black hole with
the same mass and this can be ascribed to the different boundary conditions
that QNMs have to satisfy at the surface of the star and at the black hole
horizon. Moreover, it may be noted that there is no smooth transition from the
mathematical structure of the equations describing the perturbations of stars to
those describing the perturbations of black holes.

Since the w-modes are strongly damped, one may argue that their physical
relevance is marginal. However it has been suggested that in the first milliseconds
of a gravitational collapse after the formation of a neutron star, there may be a
large amount of radiation produced by the gravitational initial data the collapse
itself generates.

This part of the signal should be essentially a superposition of w-modes,
which would then be present in the emitted signal [13].

3.3 The Fluid Modes

The polar modes have a physical origin different from the axial modes, because
they are essentially fluid pulsations. When the star is perturbed, each element of
fluid moves under the competing action of different restoring forces, as it follows
from a simple inspection of the newtonian hydrodynamical equations

∂v
∂t

=
δ�

�20
∇p0 −

1
�0
∇δp+ δf , (36)
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Table 2. The characteristic frequencies and damping times of the axial quasi-normal
modes of homogeneous stars with increasing compactness are compared to those of a
non-rotating black hole with the same mass (M = 1.35 M�). We give the first four
values of the frequency (in kHz) and of the damping time (in s) for � = 2. νs

0 and τ s

refer to the trapped modes associated to the potential well inside the star (see text),
νw
0 and τw refer to the axial w-modes, and νBH

0 and τBH to a black hole

R/M νs
0 τ s νw

0 τw νBH
0 τBH

2.4 8.6293 1.52 · 10−3 11.1738 1.70 · 10−4 8.9300 7.49 · 10−5

– – 14.2757 8.03 · 10−5 8.2848 2.43 · 10−5

– – 18.2232 5.70 · 10−5 7.1952 1.39 · 10−5

– – 22.6669 4.88 · 10−5 6.0099 0.95 · 10−5

2.28 4.4333 10.8 10.4128 5.45 · 10−4

6.0168 2.50 · 10−1 11.9074 2.91 · 10−4

7.5462 1.44 · 10−2 13.4813 2.07 · 10−4

8.9891 1.83 · 10−3 15.1428 1.67 · 10−4

2.26 2.6041 5.38 · 103 10.7852 7.60 · 10−4

3.5427 1.69 · 102 11.6922 5.34 · 10−4

4.4802 1.22 · 101 12.6138 4.22 · 10−4

5.4127 1.37 · 10−1 13.5512 3.56 · 10−4

where
δf = −∇δφ (37)

and δφ is the variation of the gravitational potential. Thus, the normal modes
of oscillations are classified according to the restoring force that is prevailing:
the g-modes, or gravity modes, if the force is due to the eulerian change in the
density δ�, and the p-modes, if it is due to a change in pressure (This clas-
sification scheme was introduced by Cowling in 1942 [15]). The two classes of
modes occupy well defined regions of the spectrum, and they are separated by
the frequency of the f -mode, or ‘pseudo-Kelvin’ mode, as it is often referred to,
since it is the generalization of the only possible mode of oscillation of an incom-
pressible homogeneous sphere. In General Relativity this classification based on
the fluid behaviour continues to hold; in addition, since the pulsation energy is
dissipated, if no other dissipative mechanisms are active, through the emission
of gravitational waves, the information carried by each mode is also encoded
in the gravitational field; indeed the frequency of the polar QNMs modes can
be found by solving (14) which are written for the perturbations of the metric
tensor components only.

The frequencies of the polar QNMs depend on the internal structure of the
star. For instance it is known from newtonian theory that the f -mode frequency
scales with the mean density of the star νf ∼

(
M/R3

)
and the first p–mode fre-
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quency scales with the star’s compactness M/R. This relation has been studied
in General Relativity for a large number of neutron star EOSs [16,17,18]. For
instance, the frequency and damping time of the f -mode are found to satisfy the
following linear relations [18]

νf
1 kHz

� (0.78± 0.01) + (1.63± 0.01)

√(
M̄

R̄3

)
,

1 s
τf

=
(
M̄3

R̄4

)[
(22.85± 1.51)− (14.65± 1.32)

(
M̄

R̄

)]
, (38)

where M̄ ≡M/1.4M� and R̄ ≡ R/10 km. Thus, if the quasi-normal modes were
identified by a spectral analysis in a detected gravitational wave, these relations,
and similar information on the p-modes, would allow to set constraints on the
mass and radius of a pulsating NS.

Since the EOS in the interior of a neutron star is poorly known, it is interest-
ing to ask whether the modes may give further information on the internal struc-
ture. It has been suggested that phase transitions from ordinary nuclear matter
to quark matter may occur in the inner core of NSs [19,20]. These transitions
may be associated to a density discontinuity which would affect the quasi-normal
mode spectrum. In a recent study [21,22] it has been shown that, as far as the
f -mode is concerned, the linear relation (38) between the frequency of the funda-
mental mode and the square root of the average density still holds for NSs with
high density discontinuities. Thus, a measure of the f -mode frequency would be
useful to constrain the neutron star average density, even when a phase tran-
sition takes place in its core. However, the presence of the discontinuity would
introduce a larger error on the determination of the stellar parameters.

A discontinuity affects the QNM spectrum also in another way: due to the
sudden change in density, an additional local source of buoyancy is introduced
which gives rise to a discontinuity g-mode. If the discontinuity occurs in the
inner core, these modes would have frequencies of the order of 1 kHz, somewhat
lower than that of the f -mode, and therefore clearly distinguishable. These modes
exhibit a peculiar feature: their frequencies computed for different stellar models
having the same mass and different EOS, cluster in a definite region which
depends exclusively on the density discontinuity Δ�/�d, and is independent of
the other parameters of the EOS [21]. Thus, if a discontinuity g-mode were
detected, this property could be used to infer the value of Δ�/�d.

Discontinuity g-modes are not necessarily associated to high density regions.
Indeed, a density discontinuity may occur also at low density, where the char-
acteristic chemical profile is determined by the history of the star, because shell
burning, flash nuclear burning and accretion phenomena leave layers of differ-
ent composition on its surface. At the interfaces between different layers, the
chemical composition changes abruptly and if no significant diffusion is present,
the density gradient is well approximated by a discontinuity and a low density
discontinuity g-mode would appear. These modes would have low frequency,
typically νg <∼200 Hz [23].
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Finally, it should be mentioned that g-modes may have real, imaginary or
zero frequency, depending on whether the considered stellar model is stable under
convection; different regimes can be identified by looking at the sign of the Brunt-
Väisälä frequency

N2 =
1
2
eν−μ2 ν′ p

′

p

(
1
γ
− 1
γ0

)
, with γ0 =

ε

p

p′

ε′
. (39)

A real, imaginary or zero N corresponds, respectively, to convective stability,
instability or marginal instability. If the star is isentropic and/or chemically
homogeneous, γ = γ0 and all g-modes degenerate to zero frequency.

4 Can the Quasi-normal Modes of Stars Be Excited?

It is interesting to answer the question in the heading of this section by consid-
ering the following illustrative example.

In recent years a large number of extrasolar planetary systems have been
discovered [24], which exhibit some very interesting properties. They are very
close to Earth (less than 10-20 pc) and they are formed by a solar type star
and one or more orbiting companions, which can be planets, super-planets or,
in some cases, brown dwarfs. Many of these companions are orbiting the main
star at such short distance that conflicts with the predictions of the standard
theories of planetary formation and evolution. For instance, some planets 1 have
orbital periods shorter than three days (for comparison, Mercury’s period is 88
days).

In the light of these findings, it is interesting to ask the following question: is
it possible that a planet orbits the main star so close as to excite one of its modes
of oscillations? How much energy would be emitted in gravitational waves by a
system in this resonant condition, compared to the energy emitted because of
the orbital motion? For how long would this condition persist? These questions
have been analysed in two recent papers [25] [26], whose results I shall briefly
summarize.

I shall consider a simplified model of a solar type star having a polytropic
EOS p = Kε1+1/n with n = 3, adiabatic exponent γ = 5/3, central density
ε0 = 76 g/cm3 and c2ε0/p0 = 5.53 · 105. These values give a star with the same
mass and radius of the Sun [26]. For this model we can compute the frequencies of
the QNM, which are listed in Table 3 for � = 2. We do not include the frequencies
of the p-modes because they are irrelevant for the following discussion.

If a planet moves on an orbit of radius R (we shall assume for simplicity
that the orbit is circular), νk =

√
G(M� +Mp)/R3/2π is the keplerian orbital

frequency, where M� and Mp are the mass of the star and of the planet, re-
spectively. The planet can excite a mode of frequency νi, only if νi is a specific
multiple of the orbital frequency, i.e.

νi = � νk , (40)
1 Here and in the following we shall indicate as “planet” also brown dwarfs and super

planets.
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Table 3. Values of the frequencies (in μHz) of the fundamental and of the first g-modes
of oscillation of a solar type star for � = 2 (see text)

f -mode g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

285 221 168 135 113 97 85 75 68 62 57

where � is the considered multipole. Introducing the dimensionless frequency

ki =
νi√

GM�/R3
�

;

where R� is the radius of the star, the resonant condition (40) can be written as

Ri =
[
�2

k2
i

·
(

1 +
Mp

M�

)]1/3
R� . (41)

Thus, Ri is the value of the orbital radius for a given mode to be excited; for
instance, using (41) we find that in order to excite the fundamental mode of
the considered star, the planet should move on an orbit of radius smaller than 2
stellar radii, therefore we first need to verify whether a planet can move on such
close orbit without being disrupted by tidal interaction.

This is equivalent to establish at which distance the star starts to accrete
matter from the planet (or viceversa), i.e. when the planet or the star overflow
their Roche lobes. It may be noted that, following the analysis in [27], tempera-
ture effects, which may provoke the melting of the planet or the evaporation of
its atmosphere, can be shown to be less stringent than the Roche-lobe limit.

Proceeding as in [26], let us assign a value of the orbital radius R = Ri
such that a given mode is excited according to (41) and be RRL(Ri,Mp,M�) the
Roche lobe radius; if the planet fills its Roche-lobe, its radius is equal to RRL and
its average density has a critical value, �RL = 3Mp/4πR3

RL. Thus, if �p > �RL,
the planet does not accrete matter on the star. Using (41) and normalizing to
the mass of the central star, ��, the value of the critical density can be rewritten
as

�RL

��
= k2

i ·
Mp/M�

�2 (1 +Mp/M�)R
3
RL

, (42)

where RRL is the dimensionless quantity RRL = RRL/Ri. In conclusion, a planet
can excite the ith-mode of the star without overflowing its Roche lobe, only if
the ratio between its mean density and that of the central star is larger than the
critical ratio (42).

In [26] we have computed this ratio assuming that the central star has three
different companions: two planets with the mass of the Earth and of Jupiter and
a brown dwarf of 40 jovian masses, ME, MJ and MBD, respectively, imposing
that they are on an orbit which corresponds to the resonant excitation of a given
mode of the solar type star. Smaller planets produce gravitational signals that
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Table 4. The critical ratio �RL/�� is given for three planets with mass equal to that
of the Earth (ME), of Jupiter (MJ) and of a brown dwarf with MBD = 40 MJ, and for
the different modes. This critical ratio corresponds to the minimum mean density that
a planet should have in order to be allowed to move on an orbit which corresponds to
the excitation of a g-mode, without being disrupted by tidal interactions

�RL/��

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

ME 12.5 7.21 4.64 3.24 2.38 1.83 1.45 1.17 0.97 0.82

MJ 13.0 7.49 4.82 3.37 2.48 1.90 1.51 1.22 1.01 0.85

MBD - - - 3.68 2.71 2.08 1.65 1.34 1.11 0.93

are too small to be interesting. The results of this analysis are shown in Table 4,
where the value of �RL/�� is tabulated for the three considered companions.

A planet like the Earth has a mean density such that �E/�� = 3.9, whereas
for a planet like Jupiter �J/�� = 0.9; thus, from Table 4 we see that an Earth-like
planet can orbit sufficiently close to the star to excite g-modes of order higher
or equal to n = 4, whereas a Jupiter-like planet can excite only the mode g10 or
higher.

We find that in no case the fundamental mode can be excited without
the planet being disrupted by accretion. According to the brown dwarf model
(“model G”) by Burrows and Liebert [28] an evolved, 40MJ, brown dwarf has a
radius RBD = 5.9 ·104 km, and a corresponding mean density �BD = 88 g cm−3;
consequently �BD/�� = 64, and this value is high enough to allow a brown dwarf
companion to excite all the g-modes of the central star. However, we also need
to take into account the destabilizing mechanism of mass accretion from the
central star. This imposes a further constraint and this is the reason why the
slots corresponding to the excitation of the g-modes lower that g4 in the last row
of Table 4 are empty.

Having established that some g-modes of the central star can, in principle,
be excited, we turn to the next question, i.e.: how much energy would be emit-
ted in gravitational waves by a system in this resonant condition, compared to
the energy emitted because of the orbital motion? The amplitude of the wave
emitted because of the orbital motion can be computed by using the quadrupole
formalism, which, in the case of circular orbit, gives (see [26] for details)

hQ(Ri) =
4Mp

r

√
2
15

(ωkRi)
2
. (43)

The values of this amplitude for the three planets considered above are shown
in Table 5.

However, if the stellar modes are excited the star will pulsate and emit more
gravitational energy than that which can be computed by the quadrupole for-
mula. In order to evaluate the resonant contribution we need to integrate the
equations of stellar perturbations (14) by assuming that the planet is a point-
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Table 5. The amplitude of the gravitational signal emitted when the three companions
considered in Table 4 move on a circular orbit of radius Ri, such that the condition of
resonant excitation of a g-mode is satisfied, is computed by the quadrupole formalism
(43) for the modes allowed by the Roche-lobe analysis. The planetary systems are
assumed to be at a distance of 10 pc from Earth

g4 g5 g6 g7 g8 g9 g10

hE
Q · 1026 3.0 2.7 2.5 2.3 2.2 2.0 1.9

hBD
Q · 1022 3.9 3.5 3.2 3.0 2.8 2.6 2.4

hJ
Q · 1024 - - - - - - 6.1

like mass which induces a perturbation on the gravitational field and on the
thermodynamical structure of the star he is orbiting.

Under these assumptions we solve the equations of stellar perturbations with
a source term given by the stress-energy tensor of the planet and compute the
characteristic amplitude of the gravitational wave [26]. In the following, we shall
call this amplitude hR, to indicate that it has been computed by solving the
relativistic equations of stellar perturbations.

We have computed hR for � = 2 (which is the relevant contribution), assuming
that the planet moves on a circular orbit of radius R0 = Ri+ΔR, where Ri is the
radius corresponding to the resonant excitation of the mode gi, for the modes
allowed by the Roche lobe analysis. We find that, as the planet approaches the
resonant orbit, hR grows very sharply.

In Fig. 2 we plot the ratio hR(R0)/hQ(Ri) as a function of ΔR to see how
much the amplitude of the emitted wave increases, due to the excitation of a
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Fig. 2. The logarithm of the ratio hl=2
R (Ri + ΔR)/hQ(Ri) is plotted as a function of

ΔR for the modes g4, g7, and g10
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g-mode, with respect to the quadrupole emission. The plot is done for the modes
g4, g7 and g10 and it shows a power-law behaviour nearly independent of the
order of the mode.

It should be stressed that hR(R0)/hQ(Ri) is also independent of the mass of
the planet. From Fig. 2 we see that as the planet approaches a resonant orbit,
the amplitude of the emitted wave may become significantly higher than that
computed by the quadrupole formalism, hQ. Thus the next question to answer
is how long can a planet orbit near a resonance, before radiation reaction effects
move it off.

Indeed, the loss of energy in gravitational waves causes a shrinking of the
orbit of a planetary system, and the efficiency of this process increases as the
planet approaches a resonant orbit.

On the assumption that the timescale over which the orbital radius evolves
is much longer than the orbital period (adiabatic approximation), the orbital
shrinking can be computed from the energy conservation law

Mp

〈
dE
dt

〉
+
〈

dEGW

dt

〉
= 0 , (44)

where E is the energy per unit mass of the planet which moves on the geodesic
of radius R0

E =
(

1− 2M�

R0

)(
1− 3M�

R0

)−1/2

, (45)

and 〈dEGW/dt〉 is the energy emitted in gravitational waves, computed numer-
ically by using the perturbative approach (see [26] for details).

Since 〈dE/dt〉 = 〈dR0/dt〉 / 〈dR0/dE〉, using (45) and (44) we find that the
time a planet spends in the region Ri < r < Ri +ΔR is

ΔT = −MpM�

2

∫ Ri

Ri+ΔR

(1− 6M�/R0)
(1− 3M�/R0)3/2

dR0

R2
0 〈dEGW/dt〉

. (46)

It should be noted that since 〈dEGW/dt〉 is proportional to M2
p , ΔT is longer

for smaller planets.
The results of this calculations are summarized in Table 6. These data have

to be used together with those in Table 5 as follows.
Consider for instance a planet like the Earth, orbiting its sun on an orbit

resonant with the mode g4. According to the quadrupole formalism it would
emit a signal of amplitude hQ(R4) = 3 ·10−26, (Table 5, first row) at a frequency
νGW = 1.13 · 10−4 Hz (table 6, first row). The data of Table 6, which include
the resonant contribution to the emitted radiation, indicate that before reaching
that resonant orbit of radius R4, the Earth-like planet would orbit in a region
of thickness ΔR = 1.7 km, slowly spiralling in, emitting waves with amplitude
hR > 10hQ(R4) = 3 · 10−25, for a time interval of 5.4 · 106 years, and that while
spanning the smaller radial region ΔR = 312 m, the emitted wave would reach
an amplitude hR > 50hQ(R4) = 1.5 · 10−24, for a time interval of 3.8 · 104 years.
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Table 6. For each mode allowed by the Roche lobe analysis (see text), we give the
frequency of the wave emitted when a planet moves on an orbit resonant with a g-
mode of its sun (column 2). When the planet spans a radial region of thickness ΔR
(column 3) approaching a resonant orbit, due to the stellar pulsations the amplitude
of the emitted wave is amplified, with respect to the quadrupole amplitude by a factor
greater than A (column 4). In the last three columns we give the time interval ΔT
needed for the three companions to span the region ΔR and reach the resonance

Mode νGW (μHz) ΔR(m) A ΔTE(yrs) ΔTBD(yrs) ΔTJ(yrs)
g4 113 1700 10 5.4 · 106 4.3 · 102 -

312 50 3.8 · 104 3.0 -
g5 97 616 10 2.7 · 106 2.1 · 102 -

113 50 1.9 · 104 1.5 -
g6 85 240 10 1.4 · 106 1.1 · 102 -

44 50 9.6 · 103 7.5 · 10−1 -
g7 75 98 10 7.0 · 105 55 -

18 50 5.0 · 103 3.9 · 10−1 -
g8 68 42 10 3.8 · 105 30 -

8 50 2.5 · 103 1.9 · 10−1 -
g9 62 18 10 1.9 · 105 15 -

3 50 1.5 · 103 1.2 · 10−1 -
g10 57 8 10 1.0 · 105 7.8 3.1 · 102

1 50 6.7 · 102 5.3 · 10−2 2.1

A jovian planet, on the other hand, could only excite modes of order n = 10
or higher, which would correspond to a resonant frequency of νGW = 5.7 · 10−5

Hz and a gravitational wave amplitude greater than 6 · 10−23 for 310 years
(ΔR = 8 m), or greater than 3 · 10−22 for ∼ 2 years (ΔR = 1m). From these
data we see that the higher the order of the mode is, the more difficult is to
excite it, because the region where the resonant effects become significant gets
narrower and the planet transits through it for a shorter time.

Much more interesting are the data for a brown dwarf companion. In this case,
for instance, the region that would correspond to the resonant excitation of the
mode g4 (ΔR = 1.7 km), with a wave amplitude greater than 3.9 · 10−21, would
be spanned in 430 years, whereas the emitted wave would have an amplitude
greater than ∼ 2 · 10−20 (ΔR = 312 m) over a time interval of ∼ 3 years.

The results of this study show that if a brown dwarf orbits a solar type star
at such distance that a g-mode is excited, the emitted radiation may be strong
enough, and for a sufficiently long time interval, to be detectable by the space
base interferometer LISA which is expecting to be operating in 2010.

5 Concluding Remarks

In this chapter I have shown how the theory of perturbations of non-rotating
stars can be constructed in analogy with the theory of perturbations of non-
rotating black holes. We have seen that by expanding the perturbed tensors
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in tensorial harmonics the equations separate and split into two decoupled sets
belonging to the axial and polar parity.

As for black holes, the equations for the axial perturbations can be reduced
to a wave equation with a potential barrier, the shape of which now depends on
how the energy density and the pressure are distributed in the unperturbed star.
Associated to this barrier there exist different classes of quasi-stationary states,
i.e. of quasi-normal modes: if the star is extremely compact the potential inside
the star is a well, and very slowly damped, trapped modes can exist.

In addition there always exist families of highly damped modes, the w-modes.
The axial modes do not have a newtonian counterpart and are modes of the
gravitational field.

The polar equations couple the perturbations of the fluid and of the gravita-
tional field. Unlike the polar equations for black holes, they cannot be reduced
to a single wave equation. However, they can be cast in different forms, depend-
ing on the particular problem one wants to solve. For instance, it is possible to
eliminate the fluid variables and obtain a set of equations only for the gravita-
tional variables, (see (14)), and this is useful if one is interested in computing
the frequencies of the QNMs. Or, the system can be reduced to a fourth order
system [29,30], or the problem can be formulated as an initial value problem for
two coupled wave equations [31].

The polar QNMs have a very rich structure and their frequencies carry in-
formation on the equation of state of the star, on the mass and on the radius.

In this chapter I considered only non-rotating stars. Rotating stars are far
more complex objects and their equilibrium configuration can be determined
only by numerical integration. Contrary to what happens in the static, spher-
ically symmetric case, an exact form of the metric appropriate to describe the
spacetime in the exterior of the fluid configuration is not available and the Kerr
metric cannot be used to this purpose; indeed, the problem of finding an interior
source for the Kerr metric is still unsolved.

In the case of slow rotation the problem can be circumvented, the metric
for the unperturbed spacetime was derived by J. Hartle in 1967 [32], and the
perturbations can be studied in a way similar to that described in this Chap.
[8,33].

It emerges that the polar and the axial perturbations, that are decoupled in
the non-rotating case, couple because of the rotation, and the coupling function
is the one which is responsible for the dragging of inertial frames. This is again
a purely relativistic effect that does not exist in newtonian theory.

The study of slowly and fastly rotating stars is one of the main topics in
relativistic astrophysics. In particular the instabilities which develop in rotating
stars due to the emission of gravitational waves, firstly discovered by Chan-
drasekhar [34], and the viscous mechanism that may damp these instabilities,
are attracting a great interest because of their obvious astrophysical relevance
and because they may be associated to a large emission of gravitational waves.

A fairly complete bibliography on this subject which, however, goes beyond
the purposes of this chapter, can be found in [35].
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Appendix: The Explicit Expressions of the Components
of the Stress-Energy Tensor

By expanding the stress-energy tensor of the fluid composing the star in tensorial
harmonics, we find that the axial and polar part can be written as

δT ax
μν =

∑
�m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
(

1
2
iωW̃�m − εhax

0�m

)
sin ϑY�m,ϑ 0

(
1
2
iωW̃�m − εhax

0�m

)
1

sin ϑ
Y�m,ϕ

−
(

1
2
iωW̃�m − εhax

0�m

)
sin ϑY�m,ϑ 0 − phax

1�m sin ϑY�m,ϑ 0

0 − phax
1�m sin ϑY�m,ϑ 0 phax

1�m

1
sin ϑ

Y�m,ϕ

(
1
2
iωW̃�m − εhax

0�m

)
1

sin ϑ
Y�m,ϕ 0 phax

1�m
1

sin ϑ
Y�m,ϕ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δT pol
μν =

∑
�m⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e2ν (E�m + 2εN�m) Y�m − 1
2
iωW�mY�m,ϕ − 1

2
iωU�mY�m − 1

2
iωW�mY�m,ϑ

−1
2
iωW�mY�m,ϕ r2 sin2 ϑ (Π�mY�m + 2pH11�m) 0 pr2V�mX�m

−1
2
iωU�mY�m 0 e2μ2 (Π�m + 2pL�m) Y�m 0

−1
2
iωW�mY�m,ϑ pr2V�mX�m 0 r2 (Π�mY�m + 2pH33�m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where H33 =
[
TY�m + V ∂2Y�m/∂ϑ

2
]
.

The perturbations of the energy density, pressure, and lagrangian displace-
ment are

δε = E�mY�m , δp = Π�mY�m ,

(ε+ p)eν+μ2ξr =
1
2
U�mY�m ,

(ε+ p)reνξϑ =
1
2

(
W�mY�m,ϑ − W̃�m

1
sinϑ

Y�m,ϕ

)
,

(ε+ p)r sinϑeνξϕ =
1
2

(
W�mY�m,ϕ + W̃�m sinϑY�m,ϑ

)
.

The hydrodynamical equations after the separation of variables give

δ(T 0ν
;ν) = 0 : E = QΠ +

e2μ2

2(ε+ p)
(ε,r −Qp,r)U ,
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δ(T rν;ν) = 0 : Π,r + (E +Π)ν,r + (ε+ p)N r = −1
2
ω2e−2νU ,

δ(Tϑν;ν) = 0 : Π + (ε+ p)N = −1
2
ω2e−2νW .
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Abstract. High Resolution Shock Capturing (HRSC) techniques achieve highly accu-
rate numerical approximations (formally second order or better) in smooth regions of
the flow, and capture the motion of unresolved steep gradients without creating spu-
rious oscillations. I will show how these techniques have been extended to relativistic
hydrodynamics, making it possible to explore some challenging astrophysical scenar-
ios. I will review recent literature concerning the main properties of different special
relativistic Riemann solvers, and discuss several test problems which are commonly
used to evaluate the performance of numerical methods in relativistic hydrodynamics.
In the second part, I will illustrate the use of HRSC methods in various astrophysi-
cal applications, where special and general relativistic hydrodynamical processes play
a crucial role, such as: relativistic extragalactic jets, accretion onto compact objects,
models of formation of Gamma-Ray Bursts, and stellar core collapse.

1 Introduction

Astrophysical scenarios involving relativistic flows have drawn the attention and
efforts of many researchers since the pioneering studies of May and White [1] and
Wilson [2]. Relativistic jets, accretion onto compact objects (in X-ray binaries
or in the inner regions of active galactic nuclei), stellar core collapse, coalesc-
ing compact binaries (neutron star and/or black holes) and recent models of
formation of gamma-ray bursts (GRBs) are examples of systems in which the
evolution of matter is described within the framework of the theory of relativity
(special or general).

Since 1991 [3] the use of numerical schemes based upon Riemann solvers,
i.e., algorithms designed to solve Riemann problems (see definition, below) in
computational relativistic hydrodynamics has proved successful in handling com-
plex flows, with high Lorentz factors and strong shocks, superseding traditional
methods which failed to describe ultrarelativistic flows [4]. By exploiting the hy-
perbolic and conservative character of the relativistic hydrodynamic equations,
and following the approach developed in Newtonian hydrodynamics, we extended
high-resolution shock-capturing (HRSC) methods to the relativistic case, first in
one-dimensional calculations [3], and, later on, in multidimensional special rela-
tivistic [5], [6] and multidimensional general relativistic hydrodynamics [7], [8],
[9].

Our approach made use of a linearized Riemann solver based on the knowl-
edge of the spectral decomposition of the Jacobian matrices of the system. Unlike
the case of classical fluid dynamics the use of HRSC techniques in relativistic

L. Fernández-Jambrina, L.M. González-Romero (Eds.): LNP 617, pp. 113–129, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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fluid dynamics is very recent and has yet to cover the full set of possible applica-
tions. In the second part of this chapter I will summarize some of the most recent
applications in modelling relativistic astrophysical systems. The task of devel-
oping robust, stable and accurate (special or general) relativistic hydrocodes is
a challenge in the field of Relativistic Astrophysics. A general relativistic hy-
drocode is a useful research tool for studying flows which evolve in a background
spacetime. Furthermore, when appropriately coupled with Einstein equations,
such a general relativistic hydrocode is crucial to model the evolution of matter
in a dynamical spacetime. The coupling between geometry and matter arises
through the sources of the corresponding system of equations. Such a marriage
between numerical relativity and numerical relativistic hydrodynamics is useful,
for example, to analyze the dynamics (and the physics) of coalescing compact
binaries. These are one of the most promising sources of gravitational radiation
to be detected by the near future Earth-based laser-interferometer observatories
of gravitational waves. Readers interested in deepening into the contents of this
chapter are addressed to the following reviews: [10], [11], [12] and [13].

2 The Equations of General Relativistic Hydrodynamics
as a Hyperbolic System of Conservation Laws

For the sake of consistency, in this section I am going to summarize the basics
(definitions and properties) of hyperbolic systems of conservation laws (Sect.
2.1), in connection with HRSC techniques (Sect. 2.2), and I will apply them to
the particular system of equations of relativistic hydrodynamics (Sects. 2.3, 2.4
and 2.5). Further mathematical details can be found in the following textbooks:
[14], [15], [16] and [17].

2.1 Hyperbolic Systems of Conservation Laws: Basics

Let us start by considering the system of p equations of conservation laws

∂u
∂t

+
d∑
j=1

∂fj(u)
∂xj

= 0 (= s(u)) (1)

where u = (u1, u2, . . . , up)T is the vector of unknowns, function of x and t,
with x = (x1, x2, . . . , xd) ∈ R

d and fj(u) = (f1j , f2j , . . . , fpj)T is the vector of
fluxes. Formally, (1) expresses the conservation of the vector u. Let D be an
arbitrary domain of R

d and let n = (n1, . . . , nd) be the outward unit normal to
the boundary ∂D of D. Then, from (1), it follows that

d
dt

∫
D

u dx +
d∑
j=1

∫
∂D

fj(u)nj dS = 0 . (2)

This balance equation establishes that the time variation of
∫
D

u dx is equal to
the losses through the boundary ∂D. Now, for all j = 1, . . . , d let

Aj(u) =
∂fj(u)
∂u

(3)
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be the Jacobian matrix of fj(u). The system (1) is called hyperbolic if, for any
ω = (ω1, . . . , ωd) ∈ R

d, and for any u, the matrix

A(u, ω) =
d∑
j=1

ωjAj(u) (4)

has p real eigenvalues λ1(u, ω) ≤ λ2(u, ω) ≤ · · · ≤ λp(u, ω) and p linearly inde-
pendent (right) eigenvectors r1(u, ω), r2(u, ω), . . ., rp(u, ω). If, in addition, the
eigenvalues λk(u, ω) are all different, the system (1) is called strictly hyperbolic.

In most cases one is concerned with the so-called initial value problem (IVP),
i.e., the solution of (1) with the initial condition

u(x, t = 0) = u0(x) . (5)

A key property of hyperbolic systems is that features in the solution propa-
gate at characteristic speeds given by the eigenvalues of the Jacobian matrices.
The characteristic curves associated to (1) are the integral curves of the differ-
ential equations

dx
dt

= λk(u(x, t)), k = 1, . . . , p , (6)

(d = 1). It can be easily proven that, along these curves the so-called character-
istic variables (a combination of the components of u) are constant. Essentially,
characteristic curves give information about the propagation of the initial data,
which formally allows one to reconstruct the solution for the initial value problem
(1) with (5) at t > 0.

Continuous and differentiable solutions that satisfy (1) and (5) pointwise are
called classical solutions. However, for nonlinear systems, classical solutions do
not exist in general even when the initial condition u0 is a smooth function, and
discontinuities develop after a finite time. Then one seeks generalized solutions
that satisfy the integral form of the conservation system (2) which are classical
solutions where they are continuous and have a finite number of discontinuities
(weak solutions). The following theorem characterizes these solutions.

Let u be a piecewise smooth function. Then, u is a solution of the integral
form of the conservation system if and only if the two following conditions are
satisfied:

1. u is a classical solution in the domains where it is continuous.
2. Across a given surface of discontinuity, Σ, it satisfies the jump conditions

(Rankine-Hugoniot conditions)

(uR − uL)nt +
d∑
j=1

[fj(uR)− fj(uL)]nxj = 0 , (7)

where uL and uR stand, respectively, for the values of u on the left and right
hand sides of Σ, and n = (nt, nx1, nx2, . . . , nxd) denotes a vector normal to
Σ.
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For 1D systems, the Rankine-Hugoniot jump condition (7) reduces to

s(uR − uL) = f(uR)− f(uL) (8)

where s is the propagation velocity of the discontinuity.
Rankine-Hugoniot conditions follow from the conservation of fluxes across the

surfaces of discontinuity. They can be used in combination with standard finite-
difference methods for the smooth regions and special procedures for tracking
the location of discontinuities to solve the equations in the presence of shocks
(shock-tracking approach). In 1D this is often a viable approach. However, in
multidimensional applications the discontinuities lie along curves (in 2D) or sur-
faces (in 3D) and in realistic problems there may be many such discontinuities
interacting in complicated ways, making the use of shock-tracking methods much
more difficult.

The class of all weak solutions is too wide in the sense that there is no
uniqueness for the initial value problem. Therefore, an effort should be made to
develop numerical methods which converge to the physically admissible solution.
Mathematically, this solution is characterized by the so-called entropy condition
(in the language of fluids, the condition that the entropy of any fluid element
should increase when running into a discontinuity). The characterization of the
entropy-satisfying solutions for scalar equations follows [18], whereas for systems
of conservation laws it has been developed by Lax [15]. Most HRSC methods
are based on exact or approximate solutions of Riemann problems between con-
tiguous numerical cells. Consider the hyperbolic system of conservation laws in
1D

∂u
∂t

+
∂f(u)
∂x

= 0 (9)

with initial data u(x, 0) = u0(x). A Riemann problem for (9) is an initial value
problem with discontinuous data, i.e.,

u0 =
{

uL if x < 0
uR if x > 0 (10)

The Riemann problem is invariant under similarity transformations (x, t) →
(ax, at), a > 0, so that the solution is constant along the straight lines x/t = con-
stant and, hence, self-similar. It consists of constant states separated by rarefac-
tion waves (continuous self-similar solutions of the differential system), shocks
and contact discontinuities [15]. In the following I will denote the Riemann so-
lution for the left and right states uL and uR, respectively, as u(x/t;uL,uR).

2.2 High-Resolution Shock-Capturing Schemes

Let us start by considering an IVP for (9). Finite-difference methods are based
on a discretization of the x− t plane defined by the discrete mesh points (xj , tn)

xj = (j − 1/2)Δx, j = 1, 2, . . . (11)
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tn = nΔt, n = 0, 1, 2, . . . , (12)

where Δx and Δt are, respectively the cell width and the time step. A finite-
difference scheme is a time-marching procedure allowing one to obtain approx-
imations to the solution in the mesh points, un+1

j , from the approximations
in previous time steps unj . Quantity unj is an approximation to u(xj , tn) but,
in the case of a conservation law, it is often preferable to view it as an ap-
proximation to the average of u(x, t) within the numerical cell [xj−1/2, xj+1/2]
(xj±1/2 = (xj + xj±1)/2)

unj ≈
1
Δx

∫ xj+1/2

xj−1/2

u(x, tn)dx , (13)

consistent with the integral form of the conservation law.
For hyperbolic systems of conservation laws, methods in conservation form

are preferred as they guarantee that the convergence (if it exists) is to one of the
weak solutions of the original system of equations (Lax-Wendroff theorem [19]).
Conservation form means that the algorithm is written as

un+1
j = unj −

Δt

Δx

(
f̂(unj−r,u

n
j−r+1, . . . ,u

n
j+q)

−f̂(unj−r−1,u
n
j−r, . . . ,u

n
j+q−1)

)
(14)

where f̂ is a consistent (i.e., f̂(u,u, . . . ,u) = f(u)) numerical flux function. The
Lax-Wendroff theorem does not state whether the method converges. To guar-
antee convergence, some form of stability is required, as for linear problems (Lax
equivalence theorem, [20]). In this direction, the notion of total-variation stability
has proven very successful although powerful results have only been obtained for
scalar conservation laws. The total variation of a solution at t = tn, TV(un), is
defined as

TV(un) =
∞∑
j=0

|unj+1 − unj | (15)

and a numerical scheme is said to be TV-stable if TV(un) is bounded for all
Δt at any time for each initial data. For a non-linear scalar conservation law,
TV-stability is a sufficient condition for convergence of numerical schemes in
conservation form with consistent numerical flux functions [16].

In recent years a very interesting line of research has focused on developing
high-order, accurate methods in conservation form satisfying the condition of
TV-stability. The conservation form is ensured by starting with the integral
version of the partial differential equation in conservation form. Integrating the
PDE in a spacetime computational cell [xj−1/2, xj+1/2]×[tn, tn+1] and comparing
with (14), the numerical flux function f̂j+1/2 is seen to be an approximation to
the time-averaged flux across the interface, i.e.,

f̂j+1/2 ≈
1
Δt

∫ tn+1

tn
f(u(xj+1/2, t)) dt . (16)
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In the above expression, the flux integral depends on the solution at the numeri-
cal interfaces, u(xj+1/2, t), during the time step. Hence, a possible procedure is to
calculate u(xj+1/2, t) by solving Riemann problems at every numerical interface
to obtain

u(xj+1/2, t) = u(0;unj ,u
n
j+1) . (17)

This is the approach followed by an important subset of shock-capturing meth-
ods, the so-called Godunov-type methods [21], [22].

These methods are written in conservation form and use different procedures
(Riemann solvers) to compute approximations to u(0;unj ,u

n
j+1). High-order of

accuracy is usually achieved by using conservative polynomial functions to in-
terpolate the approximate solutions within the numerical cells. The idea is to
produce more accurate left and right states for the Riemann problems by sub-
stituting the mean values unj (that give only first-order accuracy) for better
approximations of the true flux near the interfaces, uL

j+1/2, uR
j+1/2 (the flux-

corrected-transport algorithm [23] constitutes an alternative procedure where
higher accuracy is obtained by adding an anti-diffusive flux term to the first-order
numerical flux). The interpolation algorithms have to preserve the TV-stability
of the scheme and this is usually achieved by using monotonic functions which
lead to a decrease in the total variation (total-variation-diminishing schemes,
TVD; [24]).

If R is an interpolant function for the approximate solution un and ũ(x, tn)
is the interpolated function within the cells, i.e., ũ(x, tn) = R(un;x), satisfy-
ing TV(ũ(·, tn)) ≤ TV(un) then it can be proven that the whole scheme ver-
ifies TV(un+1) ≤ TV(un). High-order TVD schemes were first constructed by
van Leer [25] who obtained second-order accuracy by using monotonic piecewise
linear slopes for cell reconstruction. The piecewise parabolic method (PPM) of
Colella and Woodward [26] provides higher accuracy. The TVD property implies
TV-stability but can be too restrictive. In fact, TVD methods degenerate to first
order accuracy at extreme points [27]. Hence, other reconstruction alternatives
have been developed in which some growth of the total variation is allowed. This
is the case of the total-variation-bounded schemes [28], essentially nonoscillatory
(ENO) schemes [29] and the piecewise-hyperbolic method [30].

2.3 The Equations of General Relativistic Hydrodynamics

The evolution of a relativistic fluid is governed by a system of equations which
summarize local conservation laws: the local conservation of baryon number,
∇·J = 0, and the local conservation of energy-momentum, ∇·T = 0 (∇· stands
for the covariant divergence).

If {∂t, ∂i} define the coordinate basis of 4-vectors which are tangent to the
corresponding coordinate curves, then, the current of rest-mass, J, and the
energy-momentum tensor, T, for a perfect fluid, have the components: Jμ = �uμ,
and Tμν = �huμuν+pgμν , respectively, � being the rest-mass density, p the pres-
sure and h the specific enthalpy, defined by h = 1+ε+p/�, where ε is the specific
internal energy. uμ is the four-velocity of the fluid and gμν defines the metric
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of the spacetime M where the fluid evolves. As usual, Greek (Latin) indices
run from 0 to 3 (1 to 3) – or, alternatively, they stand for the general coordi-
nates {t, x, y, z} ({x, y, z}) – and the system of units is the so-called geometrized
(c = G = 1). An equation of state p = p(�, ε) closes the system. Accordingly,
the local sound velocity cs satisfies: hc2s = χ + (p/�2)κ, with χ = ∂p/∂�|ε and
κ = ∂p/∂ε|�. Following Banyuls [7], let M be a general spacetime described by
the four dimensional metric tensor gμν . According to the {3 + 1} formalism of
General Relativity (see, e.g., [31]), the metric is split into the objects α (lapse),
βi (shift) and γij , keeping the line element in the form:

ds2 = −(α2 − βiβi) dt2 + 2βi dxidt+ γij dxidxj (18)

If n is a unit timelike vector field normal to the spacelike hypersurfaces Σt (t
= const.), then, by definition of α and βi: ∂t = αn + βi∂i, with n · ∂i = 0,
∀i. Observers, OE , at rest in the slice Σt, i.e., those having n as four-velocity
(Eulerian observers), measure the following velocity of the fluid

vi =
ui

αut
+
βi

α
(19)

whereW ≡ −(u · n) = αut is the Lorentz factor which satisfiesW = (1−v2)−1/2

with v2 = vivi (vi = γijvj).
Let us define a basis adapted to the observer OE , and the following five

four-vector fields {J, T · n, T · ∂1, T · ∂2, T · ∂3}.
Hence, the system of equations of general relativistic hydrodynamics can be

written as a first-order, flux-conservative system

∇ ·A = s , (20)

where A denotes any of the above 5 vector fields, and s is the corresponding
source term. The set of conserved variables gathers those quantities which are
directly measured by OE , i.e., the rest-mass density (D), the momentum density
in the j-direction (Sj), and the total energy density (E). In terms of the primitive
variables w = (�, vi, ε) (vi = γijvj) they are

D = �W , Sj = �hW 2vj , E = �hW 2 − p (21)

Taking all the above relations together, (20) reads

1√−g

(
∂
√
γ F0(w)
∂x0 +

∂
√−gFi(w)
∂xi

)
= s(w) (22)

where the quantities Fα(w) are

F0(w) = (D,Sj , τ) (23)

Fi(w) =
(
D

(
vi − β

i

α

)
, Sj

(
vi − β

i

α

)
+ pδij , τ

(
vi − β

i

α

)
+ pvi

)
(24)
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and the corresponding sources s(w) are

s(w) =
(

0, Tμν
(
∂gνj
∂xμ

− Γ δνμgδj
)
, α

(
Tμ0 ∂lnα

∂xμ
− TμνΓ 0

νμ

))
(25)

with τ ≡ E−D, and Γ δνμ being the 4-dimensional Christoffel symbols associated
to the 4-metric gμν . The determinant (g) of the 4-metric (gμν) verifies

√−g =
α
√
γ.

2.4 The Characteristic Fields

Modern HRSC schemes use the characteristic structure of the hyperbolic system
of conservation laws. In many Godunov-type schemes, the characteristic struc-
ture is used to compute either an exact or an approximate solution of a family
of local Riemann problems at each cell interface. In characteristic based meth-
ods the characteristic structure is used to compute the local characteristic fields,
which define the directions along which the characteristic variables propagate.
In both approaches, the characteristic decomposition of the Jacobian matrices
of the nonlinear system of conservation laws is important, not only to compute
the numerical fluxes at the interfaces, but because experience has shown that it
facilitates a robust upgrading of the order of a numerical scheme.

The three 5× 5-Jacobian matrices Bi associated to (22) are

Bi = α
∂Fi

∂F0 . (26)

The full spectral decomposition of the above three 5 × 5–Jacobian matrices Bi
can be found in [10]. For the sake of completeness let me include the expressions
of the eigenvalues corresponding to the matrix Bx:

λ0 = αvx − βx (triple) (27)

which defines the material waves, and

λ± =
α
{
vx(1− c2s )± cs

√
(1− v2)[γxx(1− v2c2s )− vxvx(1− c2s )]

}
1− v2c2s

− βx (28)

which are associated with the acoustic waves. Similar expressions can be derived
for matrices By and Bz. As the reader can easily notice from (27) and (28), the
speed of the material waves not only depend on the fluid velocity components in
the wave propagation direction (vx in this case), but also on the normal velocity
components (vy and vz). This coupling has its origin in the presence of the
Lorentz factor in the equations themselves. Two crucial implications arise from
that coupling

1. The system of equations of relativistic fluid dynamics is more nonlinear than
its Newtonian counterpart. It possesses new numerical difficulties which are
specific to relativistic fluid dynamics.
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2. In the Newtonian case, the material waves in the x-direction, propagate with
the speed λ± = vx ± cs, independently of the values of the other components
(vy, vz), i.e., the transversal flow velocity. On the contrary, in the relativistic
case, the influence of the transversal components of the flow velocity in the
value of the speed propagation of the material waves will lead to a totally
different dynamical behaviour. This has been emphasized by Pons, Mart́ı and
Müller [32] in their derivation of the exact solution of the relativistic Riemann
problem in the multidimensional case. The exact Special Relativistic Riemann
Solver derived by these authors will be a keystone not only in the way of
deepening into the theoretical knowledge about the dynamics of relativistic
flows, but also in the way of building up robust multidimensional relativistic
hydro-codes.

Let me end this section pointing out that covariant formulations of the gen-
eral relativistic hydrodynamic equations, alternative to the one described in Sect.
2.3 are available in the literature [33], [34]. These formulations are also suited for
the used of advanced HRSC schemes. The corresponding characteristic structure
can be found in the above references.

2.5 Riemann Solvers in Relativistic Hydrodynamics

The scientific literature devoted to special relativistic Riemann Solvers (SRRS)
has witnessed a rapid progress since the second half of 1990s. Although some of
the SRRS proposed are a straightforward extension of the corresponding Rie-
mann solvers in classical fluid dynamics, most of them have been specifically
designed to handle the Riemann problem of the equations of (special) relativis-
tic hydrodynamics (for perfect fluids). An up-to-dated list of the SRRS can be
found in [11]:

1. Roe-type [35], SRRS [3].
2. HLLE (from the following authors: Harten, Lax and van Leer [21] and Einfeldt

[22]) SRRS (Schneider et al. [36]).
3. The exact SRRS (Mart́ı and Müller [37]).
4. Two-Shock Approximation (Balsara [38]).
5. ENO (Essentially Non-Oscillatory, Shu and Osher [39]) SRRS (Dolezal and

Wong [40]).
6. General relativistic extension of Roe RS (Eulderink and Mellema [33]).
7. Upwind SRRS (Falle and Komissarov [41]).
8. Relativistic extension of PPM (Piecewise Parabolic Method, Mart́ı, Müller

[42]).
9. Glimm SRRS (Wen, Panaitescu and Laguna [43]).

10. Iterative SRRS (Dai and Woodward [44]).
11. Marquina’s flux formula (Donat et al. [6]).
12. The exact SRRS for non-zero transversal velocities (Pons, Mart́ı and Müller

[32]).

To end this first part, let me briefly mention the paper by Pons et al. [45] in
which we show how to extend any SRRS, well established in the framework of
the Special Relativity theory, to the field of general-relativistic hydrodynamics.
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3 Astrophysical Applications

In this second part I am going to summarize the main results obtained by our
group in the study of astrophysical systems where flows evolve reaching veloci-
ties near the speed of light and/or in the presence of strong gravitational fields
(background or dynamical).

3.1 Relativistic Jets

In terms of the distance to the central object (a supermassive black hole) pow-
ering the nuclear activity in radio loud active galactic nuclei we can distinguish,
in their associated relativistic jets, three main regions: Subparsec scale, Parsec
scale and Kiloparsec scale. At kiloparsec scales, the implications of relativistic
flow speeds and/or relativistic internal energies in the morphology and dynamics
of jets have been the subject of a detailed investigation: [46], [47], [48], [49], [50].
Beams with large internal energies (hot jets) show little internal structure and
relatively smooth cocoons allowing the terminal shock (the hot spot in the radio
maps) to remain well-defined during the evolution. Their morphologies resemble
those observed in naked quasar jets like 3C273 [51]. Highly supersonic models, in
which kinematic relativistic effects dominate due to high beam Lorentz factors
(cold jets), display extended overpressured cocoons. As noted by [49], these over-
pressured cocoons can help to confine the jets during the early stages of evolution
and even cause their deflection when propagating through non-homogeneous en-
vironments. The cocoon overpressure causes the formation of a series of oblique
shocks within the beam in which the synchrotron emission is enhanced. In long
term simulations [52] the evolution is dominated by a strong deceleration phase
during with large lobes of jet material, like the ones observed in many FRIIs
(e.g., Cyg A, see [53]), start to inflate around the jet’s head. The numerical sim-
ulations reproduce some properties observed in powerful extragalactic radio jets
(lobe inflation, hot spot advance speeds and pressures, deceleration of the beam
flow along the jet) and can help to constrain the values of basic parameters (such
as the particle density and the flow speed) in the jets of real sources.

The development of multidimensional relativistic hydrodynamic codes has al-
lowed the simulation of parsec scale jets and superluminal radio components for
the first time. The presence of emitting flows at almost the speed of light enhance
the importance of relativistic effects in the appearance of these sources (relativis-
tic Doppler boosting, light aberration, time delays). Hence, models should use
a combination of hydrodynamics and synchrotron radiation transfer to compare
them with observations. In these models, moving radio components are obtained
from perturbations in steady relativistic jets. These jets propagate through pres-
sure decreasing atmospheres causing them to expand and accounting for the ob-
served jet opening angles. Where pressure mismatches exist between the jet and
the surrounding atmosphere, reconfinement shocks are produced. The energy
density enhancement produced downstream from these shocks can give rise to
stationary radio knots like those observed in many VLBI sources. Superluminal
components are produced by triggering small perturbations in these steady jets
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which propagate at almost the jet flow speed. The first radio emission simula-
tions from high-resolution three-dimensional relativistic hydrodynamic jets have
been presented in [54], [55]. They have been generated running GENESIS [56],
an optimized and parallelized 3D special relativistic hydro-code, which is suited
for massively parallel computers with distributed memory.

3.2 Jets from Collapsars

Various different types of catastrophic collapse events have been proposed to
explain the energy released in a GRB (see, e.g. [57] and [58] for a review on
GRBs) including mergers of compact binaries [59], [60], [61], [62], collapsars
[63] and hypernovae [64]. According to the current view these models require
a common engine, namely a stellar mass black hole (BH) which accretes up
to several solar masses of matter on a dynamical timescale of a few seconds.
A fraction of the gravitational binding energy released by accretion is thought
to power a pair fireball. If the baryon load of the fireball is not too large, the
baryons are accelerated together with the e+ e− pairs to Lorentz factors > 102

[65]. Such relativistic flows are supported by radio observations of GRB 980425
[66]. MacFadyen and Woosley [67] have explored the evolution of rotating helium
stars (Mα ≈ 10M�) whose iron core collapse does not produce a successful
outgoing shock, but instead forms a BH surrounded by a compact accretion
torus. Assuming that the efficiency of energy deposition is higher in the polar
regions, [67] obtain relativistic jets along the rotation axis, which remain highly
focused and seem capable of penetrating the star. However, as their simulations
were performed with a Newtonian code, they obtained jet speeds which are
appreciably superluminal.

Using a collapsar progenitor, provided by MacFadyen and Woosley, we have
simulated [68] the propagation of an axisymmetric jet through a collapsing ro-
tating massive star with the multidimensional relativistic hydrodynamic code
GENESIS. The jet forms as a consequence of an assumed (neutrino) energy
deposition in the range 1050 − 1051 ergs s−1 within a 300 cone around the ro-
tation axis. We have considered a background spacetime corresponding to a
Schwarzschild BH.

Effects due to the self-gravity of the star on the dynamics are neglected. The
equation of state includes the contributions of non-relativistic nucleons treated
as a mixture of Boltzmann gases, radiation, and an approximate correction due
to e+e−–pairs.

Complete ionization is assumed, and the effects due to degeneracy are ne-
glected. We advect nine non-reacting nuclear species which are present in the
initial model: C12, O16, Ne20, Mg24, Si28, Ni56, He4, neutrons and protons. The
jet flow is strongly beamed, spatially inhomogeneous and time dependent. The
jet reaches the surface of the stellar progenitor intact. At breakout, the maxi-
mum Lorentz factor of the jet flow is 33. After breakout, the jet accelerates into
the circumstellar medium, whose density is assumed to first decrease exponen-
tially and then become constant (≈ 10−5 g cm−3). Outside the star, the flow
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begins to expand laterally but the beam remains very well collimated. When the
simulation ends, the Lorentz factor has increased to 44.

3.3 Relativistic Bondi-Hoyle Accretion

Recent discoveries made in the field of X-ray Astronomy have greatly increased
interest in the physics of accretion flows around compact objects (neutron stars
and black holes). Analysis of quasi-periodic oscillations (QPOs), in the kHz
range, observed in neutron star X-ray binaries [69] may lead to measurements of
the precession of the accretion disk, due to the Lense-Thirring effect [70]. Same
line of reasoning applied to QPOs observed in the black hole candidate GRS
1915+105 [71] suggests that GRO J1655-40 and GRS 1915+105 are spinning at
a rate close to the maximum theoretical limit [72]. The iron Kα emission line
in the active galaxy MCG-6-30-15 [73] furnishes further evidence that (rotating)
black holes are at the center of active galactic nuclei.

Historically, the canonical astrophysical scenario in which matter is accreted
in a non-spherical way by a compact object was suggested by Hoyle and Lyttleton
[74] and Bondi and Hoyle [75]. In the following this will be referred to as the
Bondi-Hoyle-Lyttleton accretion onto a moving object. Using Newtonian gravity
these authors studied the accretion onto a gravitating point mass moving with
constant velocity through a nonrelativistic gas which is at rest and has a uniform
density at infinity. Since then, this pioneering analytic work has been numerically
investigated, for a finite size accretor, by a great number of authors over the years
(see, e.g. [76] for an up-to-date reference list).

In a series of papers [76], [77], [78], [79] the authors made a comprehensive
numerical study of the relativistic extension of the Bondi-Hoyle-Lyttleton sce-
nario. In particular, in [78], [79] a detailed analysis is made of the morphology
and dynamics of the flow evolving in the equatorial plane of a Kerr black hole.
The analysis made is novel in its use of the Kerr-Schild (KS) coordinate system,
which is the simplest within the family of horizon adapted coordinate systems,
introduced in [80] where all fields, i.e., metric, fluid and electromagnetic fields,
are free of coordinate singularities at the event horizon. This procedure allows to
perform accurate numerical studies of relativistic accretion flows around black
holes since it is possible to extend the computational grid inside the black hole
horizon. A HRSC scheme (which makes use of a linearized Riemann solver) has
been used to solve (22) in Boyer-Lindquist (BL) and also KS coordinates.

In BL coordinates, for a near-extreme Kerr black hole, the shock wraps many
times before reaching the horizon due to coordinate effects. This is a pathology
of the BL system associated to the collapse of the lapse function at the horizon.
The wrapping in the shock wave has an important and immediate consequence:
its computation in BL coordinates, although possible in principle, would be much
more challenging than in KS coordinates, and the numerical difficulties would
increase the closer to the horizon one would impose the boundary conditions in
the BL framework.

Finally, in [81] we made some studies of the spherical and axisymmetric
accretion onto a dynamic black hole, the fully dynamical evolution of imploding
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shells of dust with a black hole, the evolution of matter in rotating spacetimes,
the gravitational radiation induced by the presence of the matter fields and the
behaviour of apparent horizons through the evolution.

3.4 General Relativistic Stellar Core Collapse

In the case of spherically symmetric spacetimes the general relativistic equations
can be written in a simple way which resembles Newtonian hydrodynamics. To
this aim the choice of coordinates is crucial. The use of Schwarzschild-type coor-
dinates [82] leads to a simple general relativistic extension of Eulerian Newtonian
hydrodynamics. In terms of slicing of space-time, Schwarzschild-type coordinates
are the realization of a polar time slicing and radial gauge [83]. We have studied
[84] the general-relativistic spherically symmetric stellar core collapse, paying
particular attention to the numerical treatment of the formation and propaga-
tion of strong shocks (in the framework of the so-called prompt mechanism of
type II Supernova) extending HRSC techniques to the general-relativistic hydro-
dynamic equations. Details on the particular equations to be solved can be found
in the above reference. A very simple way of modelling the essential features of
the stellar core collapse of a massive star is to incorporate a simple equation
of state like that of an ideal gas, but taking an adiabatic exponent, Γ , which
depends on the density according to:

Γ = Γmin + η(log �− log �b) , (29)

with η = 0 if � < �b and η > 0 otherwise [85]. In [84] we have considered the
collapse of a white dwarf-like configuration, with a gravitational mass of 1.3862
M�, and two sets of values for the parameters Γmin, η and �b: {1.33, 1, 2.5×1014

gcm−3 } (model A) and {1.33, 5, 2.5×1015 gcm−3 } (model B). The following
main results obtained by [84] merit to be pointed out:

1. The formation and evolution of a strong shock is sharply solved in one or two
zones and is free of spurious oscillations.

2. As it should be, the conservative features of the code preserve, during the
evolution, the values of total baryonic mass and energy (or gravitational mass).

Let me draw reader’s attention towards a recent paper by Dimmelmeier, Font
and Müller [86] where, for first time, the authors employ HRSC schemes to
study multidimensional relativistic core collapse in a dynamical, axisymmetric
space-time. In this reference, gravity is described assuming the so-called confor-
mal flatness condition for the spatial part of the spacetime metric. The authors
make an exhaustive analysis of the gravitational waveforms generated during
axisymmetric relativistic rotational core collapse. Figure 1, taken from [87], dis-
plays three of the many cases analyzed by the authors (the interested reader
is addressed to [88]). The different curves show the time evolution of the cen-
tral density (left panel) and the quadrupole gravitational wave amplitude (right
panel), comparing –in each case– the Newtonian (dotted lines) and the Ein-
steinian (continuous line) theories of gravity. The general trend found in these
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Fig. 1. Central density versus time (left panel) and quadrupole gravitational wave
amplitude (right panel) for three models of rotating configurations. Solid (dotted) lines
correspond to the relativistic (Newtonian) calculations

curves is that, although relativistic gravity leads to higher central densities than
in Newtonian gravity, the �r4-term in the quadrupole formula damps, in some
way, that behaviour and enhances the contribution of the mass shells in the
exterior envelope.

The study made by Dimmelmeier, Font and Müller [86] is not only consistent
with what was already found in the early one-dimensional calculations of stellar
core collapse, but goes beyond the purely one-dimensional case, and is, without
any doubt, an outstanding step towards further studies of fully multidimensional
general-relativistic stellar core collapse.

Finally, astrophysical applications using the characteristic formulation of
general relativity and hydrodynamics [34] in investigations of collapse of super-
massive stars and gravitational waves from accreting black holes can be found
in [89] and [90], respectively.
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5. J.A. Font, J.M. Ibáñez, A. Marquina, J.M. Mart́ı: Astron. Astrophys. 282, 304

(1994)
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59. B. Pacyński: Astrophys. Journ. 308, L43 (1986)
60. J. Goodman: Astrophys. Journ. 308, L47 (1986)
61. D. Eichler, M. Livio, T. Piran, D.N. Schramm: Nature 340, 126 (1989)
62. R. Mochkovitch, M. Hernanz, J. Isern, X. Martin: Nature 361, 236 (1993)



Numerical Relativistic Hydrodynamics 129

63. S.E. Woosley: Astrophys. Journ. 405, 273 (1993)
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Abstract. New numerical methods have been applied in relativity to obtain a nu-
merical evolution of Einstein equations much more robust and stable. Starting from
3+1 formalism and with the evolution equations written as a FOFCH (first-order flux
conservative hyperbolic) system, advanced numerical methods from CFD (Computa-
tional Fluid Dynamics) have been successfully applied. A flux limiter mechanism has
been implemented in order to deal with steep gradients like the ones usually associ-
ated with black hole spacetimes. As a test bed, the method has been applied to 3D
metrics describing propagation of nonlinear gauge waves. Results are compared with
the ones obtained with standard methods, showing a great increase in both robustness
and stability of the numerical algorithm.

1 Introduction

From the very beginning, 3D numerical relativity has not been an easy domain.
Difficulties arise either from the computational side (the large amount of vari-
ables to evolve, the large number of operations to perform, the stability of the
evolution code) or from the physical side, like the complexity of the Einstein
equations themselves, boundary conditions, singularity avoiding gauge choices,
and so on. Sometimes there is a connection between both sides. For instance,
the use of singularity avoiding slicings generates large gradients in the vicinity
of black holes. Numerical instabilities can be produced by these steep gradients.
The reason for this is that the standard evolution algorithms are unable to deal
with sharp profiles. The instability shows up in the form of spurious oscillations
which usually grow and break down the code.

Numerical advanced methods from CFD (Computational Fluid Dynamics)
can be used to avoid this. Stable codes are obtained which evolve in a more
robust way, without too much dissipation, so that the shape of the profiles of the
evolved quantities is not lost. These advanced methods are then specially suited
for the problem of shock propagation, but they apply only to strongly hyperbolic
systems, where one is able to get a full set of eigenfields which generates all the
physical quantities to be evolved. In the 1D case, these methods usually fulfill
the TVD (Total Variation Diminishing) condition when applied to transport
equations. This ensures that no new local extreme appears in the profiles of the
eigenfields, so that spurious oscillations are ruled out ab initio (monotonicity
preserving condition). Unluckily, there is no general method with this property
in the 3D case, mainly because the eigenfield basis depends on the direction of
propagation. We will show how this can be achieved at least in some cases.
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The specific methods we will use are known as flux limiter methods. We will
consider plane waves in 3D as a first generalization of the 1D case, because the
propagation direction is constant. This specific direction leads then to an specific
eigenfield basis, so that the 1D numerical method can be easily generalized to
the 3D case.

The algorithm will be checked with a “Minkowski waves” metric. It can be
obtained by a coordinate transformation from Minkowski space-time. All the
metric components are transported while preserving their initial profiles. The
line element has the following form:

ds2 = −H(x− t) dt2 +H(x− t) dx2 + dy2 + dz2 (1)

where H(x − t) is any positive function. We can choose a periodic profile with
sharp peaks so both the space and the time derivatives of H(x − t) will have
discontinuous step-like profiles. If we can solve well this case (the most extreme),
we can hope that the algorithm will work as well in more realistic cases where
discontinuities do not appear.

Minkowski waves are a nice test bed because the instabilities can arise only
from the gauge (these are pure gauge after all!). This is a first step to deal
with evolution instabilities in the Einstein equations by the use of flux limiter
methods. This will allow us to keep all our gauge freedom available to deal with
more physical problems, like going to a co-rotating frame or adapting to some
special geometry. Advanced numerical methods take care of numerical problems
so that ‘physical’ gauge choices can be used to take care of physics requirements.

2 The System of Equations

We will use the well known 3+1 description of spacetime [1,2,3] which starts by
decomposing the line element as follows:

ds2 = −α2 dt2 + γij (dxi + βi dt) (dxj + βj dt) i, j = 1, 2, 3 (2)

where γij is the metric induced on the three-dimensional slices and α, βi are the
lapse and the shift, respectively. For simplicity the case βi = 0 (normal coordi-
nates) will be considered here. The intrinsic curvature of the slices is then given
by the three-dimensional Ricci tensor (3)Rij , whereas their extrinsic curvature
Kij is given by:

∂tγij = −2 α Kij . (3)

In what follows, all the geometrical operations (index raising, covariant deriva-
tions, etc) will be performed in the framework of the intrinsic three-dimensional
geometry of every constant time slice. With the help of the quantities defined
in (2,3), the ten fourdimensional field equations can be expressed as a set of six
evolution equations:

∂tKij = −∇iαj + α
[
(3)Rij − 2K2

ij + trK Kij − 8 π
(
Tij −

T

2
γij

)]
(4)
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plus four constraint equations

(3)R− tr (K2) + (trK)2 = 16πα2T 00 (5)

∇kK
k
i − ∂i(trK) = 8παT 0

i . (6)

The evolution system (4) has been used by numerical relativists since the very
beginning of the field (see for instance the seminal work of Eardley and Smarr
[4]), both in spherically symmetric (1D) and axially symmetric (2D) spacetimes.
By the turn of the century, the second order system (4) has been rewritten as a
first-order flux conservative hyperbolic (FOFCH) system [5,6,7] in order to deal
with the generic (3D) case, where no symmetries are present. But the second
order system (4) is still being used in 3D numerical calculations [8], mainly when
combined with the conformal decomposition ofKij as introduced by Shibata and
Nakamura [9,10]. In the system (3,4) there is a degree of freedom to be fixed
because the evolution equation for the lapse function α is not given. In the study
of Black Holes, the slicing is usually chosen in order to avoid the singularity [11]:

∂t lnα = −αQ (7)

where:
Q = f(α)trK . (8)

Three basic steps are needed to obtain a FOFCH system from the ADM system.
First, one must introduce some new auxiliary variables to express the second
order derivatives in space as first order. These new quantities correspond to the
space derivatives:

Ak = ∂k lnα , Dkij = 1/2 ∂kγij . (9)

The evolution equations for these variables are:

∂tAk + ∂k(αftrK) = 0 (10)
∂tDkij + ∂k(αKij) = 0 . (11)

At the second step the system is expressed in a first order balance law form

∂tu + ∂kF k(u) = S(u) , (12)

where the array u displays the set of independent variables to evolve and both
“fluxes” F k and “sources” S are vector valued functions. At the third step an-
other additional independent variable is introduced to obtain a strongly hyper-
bolic system [11]:

Vi = Dirr −Dr
ri (13)

and its evolution equation is obtained using the definition of Kij from (3) and
switching space and time derivatives in the momentum constraint (6). The result
is an independent evolution equation for Vi while the previous definition (13)
in terms of space derivatives can instead be considered as a first integral of
the extended system. The extended array u will then contain the following 37
functions u = (α, γij , Kij , Ai, Dkij , Vi).
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3 The Numerical Algorithm

Due to the structure of the equations, the evolution (represented by the operator
E(Δt)) described by (12) can be decomposed into two separate processes; the
first one is a transport process and the second one is the contribution of the
sources.

The sources step (represented by the operator S(Δt)) does not involve space
derivatives of the fields, so that it consists in a system of coupled non-linear
ODE (Ordinary Differential Equations):

∂tu = S(u) . (14)

The transport step (represented by the operator T (Δt)) contains the principal
part and it is given by a set of quasi-linear transport equations:

∂tu + ∂kF k(u) = 0 . (15)

The numerical implementation of these separated processes is quite easy. Second
order accuracy in Δt can be obtained by using the well known Strang splitting.

E(Δt) = S(Δt/2) T (Δt) S(Δt/2) . (16)

According to (3,7) the lapse and the metric have no flux terms. It means that
a reduced set of 30 quantities u = (Kij , Ai, Dkij , Vi) are transported in the
second step over an inhomogeneous static background composed by (α, γij).
The equations for the transport step (15) are given by:

∂tKij + ∂k(αλkij) = 0 (17)
∂tAk + ∂k(αf(α)trK) = 0 (18)
∂tDkij + ∂k(αKij) = 0 (19)
∂tVk = 0 (20)

where:

λkij = Dk
ij −

m

2
V kγij +

1
2
δki (Aj + 2Vj −Djrr) +

1
2
δkj (Ai + 2Vi −Dirr) (21)

and m is an arbitrary parameter.
To evolve the transport step, we will consider flux-conservative numeric al-

gorithms [12], obtained by applying the balance to a single computational cell.
In the 1D case the cell goes from n to n+1 in time (t = n ·Δt) and from j− 1/2
to j + 1/2 in space (xj = j ·Δx), so that we have:

Un+1
j = Unj −

Δt

Δx

[
F
n+1/2
j+1/2 − F

n+1/2
j−1/2

]
. (22)

Interface fluxes can be calculated in many different ways, leading to different
numerical methods. We will use here the well known MacCormack method. This
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Fig. 1. Plot of Kxx for the initial metric given by (1) with H(x− t) = 1+A cos[ω (x−
t))] with periodic boundaries. Continuous line is the initial condition. Dashed line is
after 40 iterations

flux-conservative standard algorithm works well for smooth profiles, as it can be
appreciated in Fig. 1.

But this standard algorithm is not appropriate for step-like profiles because
it produces spurious oscillations near the steep regions, as it can be appreciated
in Fig. 2.

Fig. 2. Same as in Fig. 1 with the step-like initial data for Kxx. Continuous line is
the initial condition. Dashed line is after 10 iterations. Note the spurious oscillations
around the corners
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More advanced numerical methods must be used to eliminate (or at least to
reduce) these oscillations. These advanced methods use information about the
eigenfields and the propagation direction, so the flux characteristic matrix along
the propagation direction must be diagonalized.

4 Eigenfields

We will use a convenient method to compute the eigenfields. Let us study the
propagation of a step-like discontinuity in the transported variables u which
will move along a specific direction n with a given velocity v. Information about
the corresponding eigenfields can be extracted from the well known Rankine-
Hugoniot shock conditions:

v[u] = nk[F k(u)] (23)

where [ ] represents the jump in the discontinuity. In our case

v[Kij ] = nr[αλrij ] (24)
v[Ak] = nk[αf(α)trK] (25)
v[Dkij ] = nk[αKij ] (26)
v[Vk] = 0 (27)

where we must note that both background metric coefficients and propagation
direction are assumed to be continuous, so they are transparent to the [ ] symbol.

If we develop these expressions we arrive at the following conclusions, where
Sn = nrSr is the projection of the quantity S over n and S⊥ = Sk − Sn nk are
the transverse components:

1. [Vk], [A⊥], [D⊥ij ] and [An − f trDn] propagate along n with speed v = 0.
There are eighteen such eigenfields. For the line element given by (1) nk is
along the x axis and all these fields are actually zero.

2. [λnij − trλnninj ] and [Kij − trKninj ] do generate eigenfields propagating
along n with speed v = ±α (light cones). There are only ten such eigenfields
because all of them are traceless. For Minkowski waves, where there is only
gauge, all these combinations are zero. This indicates that the correct way
to get the traceless part of a given tensor Sij in this context is just to take
Sij − trSninj , so that the contribution of gauge modes will disappear.

3. [An] and [trK] do generate eigenfields propagating along n with speed v =
±√fα (gauge cones). There are two such eigenfields corresponding to the
gauge sector. For Minkowski waves, there are the only non-zero components.
We are left with:

v[trK] = α[An] (28)
v[Ak] = αf(α)[trK]nk (29)

so that [Ak] is proportional to nk. Now we can get the gauge eigenfields:√
fnkF

k(trK)± F (An) . (30)
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These eigenfields propagate along n according simple advection equations, a
familiar situation in the 1D case. Although this decomposition and diagonaliza-
tion is trivial in 1D, it is very useful in the multidimensional case for a generic
direction n.

5 Flux Limiter Methods

The flux limiter methods [12] we will use can be decomposed into some basic
steps. First of all the interface fluxes have to be calculated with any standard
second order accurate method (MacCormack in our case). Then, the propagation
direction n and the corresponding eigenfields can be properly identified at every
cell interface using the straight relation between nk and Ak (which is strongly
related with F k(trK)) and the general decomposition from the previous section.
Two advection equations (one for every sense of propagation) are now available
for the gauge eigenfluxes (30).

At the 1D case the procedure is quite well known. Let us choose for instance
the eigenflux which propagates to the right (an equivalent process will be valid
for the other eigenflux propagating to the left). This interface eigenflux Fn+1/2

j+1/2
can be understood as the grid point flux Fnj plus some increment Δj+1/2 =

F
n+1/2
j+1/2 − Fnj . In general, the purpose of the limiter is to use a mixture of the

increments Δj+1/2 and Δj−1/2 to ensure monotonicity. In our case we are using
a robust mixture which goes by applying the well known minmod rule to Δj+1/2
and 2Δj−1/2. In that way, the limiter acts only in steep regions, where the ratio
between neighbouring increments exceeds a factor of two.

We can apply this method to the step-like initial data propagating along the
x axis. We can see in Fig. 3 that the result is much better than before. It can be
(hardly) observed a small deviation from the TVD condition, which is produced
by the artificial separation produced by the Strang splitting into transport and
non-linear source steps.

This method can be applied, with the general decomposition described in
section 4, to discontinuities which propagate along any constant direction, and
not only to the trivial case, aligned with the x axis, that we have considered
until now.

To prove it, we have rotated the metric of Minkowski waves in the x−z plane
to obtain a diagonal propagation of the profile. The line element in this case has
the following form:

ds2 = − H
(
x+ z√

2
− t
)

dt2 +
1
2

[
1 +H

(
x+ z√

2
− t
)]

(dx2 + dz2) + dy2

+
1
2

[
−1 +H

(
x+ z√

2
− t
)]

(dx dz + dz dx) (31)

We show the results in Fig. 4.
We can also see in Fig. 5 a z = constant section of the same results to allow

a more detailed comparison with the initial data. We can also compare with the
1D case in Fig. 3 and check the closer evolved profiles.
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Fig. 3. Same as Fig.2 where the methods presented in this paper are applied. Contin-
uous line is the initial condition. Dashed line is after 10 iterations

Fig. 4. 3D plot of Kxx. The step-like profile has been propagated with periodic bound-
ary conditions until one full period (about 80 iterations in this case) has elapsed and
it has returned to the initial position

Now we are in position to compare the simple Flux-limiter method we are
using here with the advanced 3D methods used in CFD. From the theoretical
point of view, we know that none of these methods can be shown to be really
TVD, because the eigenfield decomposition is direction-dependent and the char-
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acteristic matrices for different directions do not commute. From the numerical
point of view, our methods are based on two simplifying assumptions, namely:

1. One is able to identify one specific direction in which gauge propagation takes
place. In our case, this is taken to be nk = [Ak].

2. The propagation equation along that direction n can be approximated by an
advection equation. In our case, this implies that n can be locally considered
as a constant vector.

Fig. 5. Section z =const. from Fig. 4. Continuous line is the initial condition. Dashed
line is after one full period

These assumptions imply, of course, that we are loosing generality. This can
be a problem, specially when studying wave propagation in the near region,
where n can hardly be assumed constant. But, on the other hand, they allow us
the use of a very simple method, which has its own advantages:

1. The Flux corrections can be selectively applied to the gauge sector only, with-
out affecting other degrees of freedom.

2. Our limiter choice amounts to define a numerical discontinuity where the
ratio between neighbouring slopes exceeds a factor of two, so that the limiter
is applied only at these regions, having most of the grid points unaffected.

Allowing for that, we can conclude that our results are a first try to in-
corporate 3D CFD methods to Numerical Relativity. Our results can then be
considered as a preliminary view of what can be expected from a more systematic
use of such powerful methods in the near future.
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11. C. Bona, J. Massó, E. Seidel, J. Stela: Phys. Rev. D56, 3405 (1997)
12. R. J. LeVeque: Numerical methods for conservation laws, (Birkhauser, Basel, 1992)



Gauge Conditions for Long-Term Numerical
Black Hole Evolution With or Without Excision

Miguel Alcubierre1, Bernd Brügmann1, Denis Pollney1,
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Abstract. We extend previous work on 3D black hole excision to the case of distorted
black holes, with a variety of dynamic gauge conditions that are able to respond natu-
rally to the spacetime dynamics. We show that the combination of excision and gauge
conditions we use is able to drive highly distorted, rotating black holes to an almost
static state at late times, with well behaved metric functions, without the need for
any special initial conditions or analytically prescribed gauge functions. Further, we
show for the first time that one can extract accurate waveforms from these simulations,
with the full machinery of excision or no excision and dynamic gauge conditions. The
evolutions can be carried out for long times, far exceeding the longevity and accuracy
of even better resolved 2D codes. While traditional 2D codes show errors in quantities
such as apparent horizon mass of over 100% by t ≈ 100M , and crash by t ≈ 150M ,
with our new techniques the same systems can be evolved for more than hundreds of
M ’s in full 3D with errors of only a few percent.

1 Introduction

The long term numerical evolution of black hole systems is one of the most
challenging and important problems in numerical relativity. For black holes, the
difficulties of accuracy and stability in solving Einstein’s equations numerically
are exacerbated by the special problems posed by spacetimes containing sin-
gularities. At a singularity, geometric quantities become infinite and cannot be
handled easily by a computer.

Traditionally, in the 3+1 approach the freedom in choosing the slicing is used
to slow down the approach of the time slices towards the singularity (“singularity
avoidance”), while allowing them to proceed outside the black hole. Singularity
avoiding slicings are able to provide accurate evolutions, allowing one to study
black hole collisions and extract waveforms [1], but only for limited cases and
evolution times. Combining short full numerical evolutions with perturbation
methods, one can even study the plunge from the last stable orbit of two black
holes [2]. But a dramatic breakthrough is required to push numerical simulations
far enough to study orbiting black holes, requiring accurate evolutions exceeding
time scales of t ≈ 100M . In 3D, traditional approaches have not been able to
reach such time scales, even in the case of Schwarzschild black holes.

L. Fernández-Jambrina, L.M. González-Romero (Eds.): LNP 617, pp. 140–158, 2003.
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A more promising approach involves cutting away the singularity from the
calculation (“singularity excision”), assuming it is hidden inside an apparent
horizon (AH) [3,4]. Although this work has been progressing, from early spher-
ical proof of principle in [4] to recent 3D developments [5,6,7,8], beyond a few
spherical test cases [9,10] it has yet to be used in conjunction with appropriate
live gauge conditions designed to respond to both the dynamics of the black hole
and the coordinate motion through the spacetime.

In this paper we extend recent excision work [7] to the case of distorted,
dynamic black holes in 3D, using a new class of gauge conditions. These gauge
conditions, which not only respond naturally to the true spacetime dynamics,
but also drive the system towards an almost static state at late times, allow us to
handle black holes without considering special initial coordinate systems, such
as the Kerr-Schild type, which may be difficult or impossible to find during a
generic black hole evolution. We show that not only are the evolutions accurate
as indicated by the mass associated with the apparent horizon, but also that
very accurate waveforms can be extracted with excision or without excision, even
when the waves carry only a tiny fraction of the energy of the spacetime. We also
show that the 3D evolutions of dynamic black holes we are now able to perform,
are superior, in terms of accuracy, stability, and longevity, to previous dynamic
3+1 black hole simulations, whether they were carried out in full 3D or even
when restricted to 2D. These results indicate that black hole evolution with new
gauge conditions can be made to work under rather general circumstances, and
can dramatically improve both the length of the evolutions, and the accuracy of
the waveforms extracted, which will be crucial for gravitational wave astronomy.

2 Initial Data

For this paper we consider a series of single distorted black hole spacetimes [11,12]
that have been used to model the late stages of black hole coalescence [13,14].
Following [11,12], the initial three-metric γab is chosen to be

ds2 = ψ4 [e2q (dη2 + dθ2
)

+ sin2 θ dφ2] , (1)

where the “Brill wave” function q is a general function of the spatial coordi-
nates, subject to certain regularity and fall off restrictions, that can be tailored
to produce very distorted 3D black holes interacting with nonlinear waves. The
radial coordinate η is logarithmic in the cartesian radius r. There are two classes
of data sets used here corresponding to even- and odd-parity distortions. The
even-parity data have vanishing extrinsic curvature, while the cases contain-
ing an odd-parity component have nontrivial extrinsic curvature Kij . As shown
in [15,16], these distorted black hole data sets can include rotation as well, cor-
responding to spinning, distorted black holes that mimic the early merger of two
orbiting black holes. Hence they make an ideal test case for the development
of our techniques. We leave the details of the construction of these black hole
initial data sets to [15,16].
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An important point that we wish to emphasize is that such data are not of the
Kerr-Schild form with ingoing coordinates at the horizon. That particular form
of black hole initial data sets has been recently advocated as providing a more
natural treatment for black hole excision since the coordinate system is adapted
to inward propagation of quantities at the horizon [17]. However, it is not obvious
that the physically desired initial data can always be written in the Kerr-Schild
form (or, for that matter, in any other particular form). Furthermore, during
an evolution, even if similar such coordinates are somehow actively enforced, it
is probably not possible to have such a coordinate system in place at all times,
when a new black hole forms. Hence, we prefer to be able to handle black hole
data in any coordinate system, and apply coordinate conditions that naturally
drive the system into a static state as the black hole system settles down to Kerr,
from any starting point.

3 Evolution and Excision Procedures

Our simulations have been performed using what we refer to as the “BSSN”
version of the 3+1 evolution equations [18,19,20,21], which we have found to
have superior stability properties when compared to standard formulations.

The standard variables in the 3+1 formulation of ADM (Arnowitt-Deser-
Misner, see [22]) are the 3-metric γij and its extrinsic curvature Kij . The gauge
is determined by the lapse function α and the shift vector βi. We will only
consider the vacuum case. The evolution equations are

(∂t − Lβ) γij = −2αKij , (2)
(∂t − Lβ) Kij = −DiDjα+ α(Rij +KKij − 2KikK

k
j) , (3)

and the constraints are

H ≡ R+K2 −KijK
ij = 0 , (4)

Di ≡ Dj(Kij − γijK) = 0 . (5)

Here Lβ is the Lie derivative with respect to the shift vector βi, Di is the
covariant derivative associated with the 3-metric γij , Rij is the three-dimensional
Ricci Tensor, R the Ricci scalar, and K is the trace of Kij .

We will use the BSSN form of these equations (Baumgarte, Shapiro [19], and
Shibata, Nakamura [18]). One introduces new variables based on a trace decom-
position of the extrinsic curvature and a conformal rescaling of both the metric
and the extrinsic curvature. The trace-free part Aij of the extrinsic curvature is
defined by

Aij = Kij −
1
3
γijK . (6)

Assuming that the metric γij is obtained from a conformal metric γ̃ij by a
conformal transformation,

γij = ψ4γ̃ij , (7)
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we can choose a conformal factor ψ such that the determinant of γ̃ij is 1:

ψ = γ1/12 , (8)
γ̃ij = ψ−4γij = γ−1/3γij , (9)
γ̃ = 1 , (10)

where γ is the determinant of γij and γ̃ is the determinant of γ̃ij . Instead of γij
and Kij we can therefore use the variables

φ = lnψ =
1
12

ln γ , (11)

K = γijKij , (12)
γ̃ij = e−4φγij , (13)

Ãij = e−4φAij , (14)

where γ̃ij has determinant 1 and Ãij has vanishing trace. Furthermore, we in-
troduce the conformal connection functions

Γ̃ i = γ̃jkΓ̃ ijk = −∂j γ̃ij , (15)

where Γ̃ ijk is the Christoffel symbol of the conformal metric. The second equality
holds if the determinant of the conformal 3-metric γ̃ is actually unity (which is
true analytically but may not be numerically). We call φ, K, γ̃ij , Ãij , and Γ̃ i

the BSSN variables.
In terms of the BSSN variables the evolution equation (2) becomes

(∂t − Lβ) γ̃ij = −2αÃij , (16)

(∂t − Lβ) φ = −1
6
αK , (17)

while (3) leads to

(∂t − Lβ) Ãij = e−4φ[−DiDjα+ αRij ]TF + α(KÃij − 2ÃikÃkj) , (18)

(∂t − Lβ) K = −DiDjα+ α(ÃijÃij +
1
3
K2) , (19)

where TF denotes the trace-free part of the expression in brackets. On the right-
hand side of (19) we have used the Hamiltonian constraint (4) to eliminate the
Ricci scalar,

R = KijK
ij −K2 = ÃijÃij −

2
3
K2 . (20)

An evolution equation for Γ̃ i can be obtained from (15) and (16),

∂tΓ̃
i = −2(α∂jÃij + Ãij∂jα)− ∂jLβ γ̃ij . (21)

In this equation we use the momentum constraint (5) to substitute for the di-
vergence of Ãij ,

∂jÃ
ij = −Γ̃ ijkÃjk − 6Ãij∂jφ+

2
3
γ̃ij∂jK . (22)
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One subtlety in obtaining numerically stable evolutions with the BSSN vari-
ables is precisely the question of how the constraints are used in the evolution
equations. Several choices are possible and have been studied, see [23].

Note that in the preceding equations we are computing Lie derivatives of
tensor densities. If the weight of a tensor density T is w, that is if T is a tensor
times γw/2, then

LβT = [LβT ]w=0
∂ + wT∂kβk , (23)

where the first term denotes the tensor formula for Lie derivatives with the
derivative operator ∂ and the second is the additional contribution due to the
density factor. The density weight of ψ = eφ is 1/6, so the weight of γ̃ij and Ãij
is −2/3 and the weight of γ̃ij is 2/3. To be explicit,

Lβφ = βk∂kφ+
1
6
∂kβ

k , (24)

Lβ γ̃ij = βk∂kγ̃ij + γ̃ik∂jβk + γ̃jk∂iβk −
2
3
γ̃ij∂kβ

k , (25)

Lβ γ̃ij = βk∂kγ̃ij − γ̃ik∂kβj − γ̃jk∂kβi +
2
3
γ̃ij∂kβ

k . (26)

The evolution equation (21) for Γ̃ i therefore becomes

∂tΓ̃
i = γ̃jk∂j∂kβi +

1
3
γ̃ij∂j∂kβ

k + βj∂jΓ̃ i − Γ̃ j∂jβi +
2
3
Γ̃ i∂jβ

j

−2Ãij∂jα+ 2α(Γ̃ ijkÃjk + 6Ãij∂jφ−
2
3
γ̃ij∂jK) . (27)

In the second line we see the formula for a vector density of weight 2/3, but
since Γ̃ i is derived from the Christoffel symbols we obtain extra terms involving
second derivatives of the shift (the first line in the equation above).

On the right-hand sides of the evolution equations for Ãij and K, (18) and
(19), there occur covariant derivatives of the lapse function, and the Ricci tensor
of the non-conformal metric. Since

Γ kij = Γ̃ kij + 2(δki ∂jφ+ δkj ∂iφ− γ̃ij γ̃kl∂lφ) , (28)

where Γ̃ kij is the Christoffel symbol of the conformal metric, we have for example

DiDiα = e−4φ(γ̃ij∂i∂jα− Γ̃ k∂kα+ 2γ̃ij∂iφ∂jα) . (29)

The Ricci tensor can be separated in two parts,

Rij = R̃ij +Rφij , (30)

where R̃ij is the Ricci tensor of the conformal metric and Rφij denotes additional
terms depending on φ:

Rφij = −2D̃iD̃jφ− 2γ̃ijD̃kD̃kφ

+4D̃iφ D̃jφ− 4γ̃ijD̃kφ D̃kφ , (31)
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where D̃i is the covariant derivative associated with the conformal metric. The
conformal Ricci tensor can be written in terms of the conformal connection
functions as

R̃ij = −1
2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃ k + Γ̃ kΓ̃(ij)k

+γ̃lm
(
2Γ̃ kl(iΓ̃j)km + Γ̃ kimΓ̃klj

)
. (32)

A key observation here is that if one introduces the Γ̃ i as independent vari-
ables, then the principal part of the right-hand side of (18) contains the wave
operator γ̃lm∂l∂mγ̃ij but no other second derivatives of the conformal metric.
This brings the evolution system one step closer to being hyperbolic.

One of the reasons why we have written out the BSSN system in such detail
is to point out a subtlety that arises in the actual implementation if one wants to
achieve numerical stability. In the computer code we do not use the numerically
evolved Γ̃ i in all places, but follow this rule:

• Partial derivatives ∂jΓ̃ i are computed as finite differences of the independent
variables Γ̃ i that are evolved using (27).

• In expressions that require Γ̃ i, not its derivative, we substitute γ̃jkΓ̃ ijk(γ̃),
that is we do not use the independently evolved variable Γ̃ i but recompute Γ̃ i

according to its definition (15) from the current values of γ̃ij .

In practice we have found that the evolutions are far less stable if either Γ̃ i

is treated as an independent variable everywhere, or if Γ̃ i is recomputed from
γ̃ij before each time step. The rule just stated helps to maintain the constraint
Γ̃ i = −∂j γ̃ij well behaved without removing the advantage of reformulating the
principal part of the Ricci tensor.

In summary, we evolve the BSSN variables γ̃ij , φ, Ãij , K, and Γ̃ i according
to (16), (17), (18), (19), and (27), respectively. The Ricci tensor is separated as
shown in (30) with each part computed according to (31) and (32) respectively.
The Hamiltonian and momentum constraints have been used to write the equa-
tions in a particular way. The evolved variables Γ̃ i are only used when their
partial derivatives are needed (the one term in the conformal Ricci tensor (32)
and the advection term βk∂kΓ̃

i in the evolution equation for the Γ̃ i themselves,
(27)).

We use the simple excision approach described in [7]. Our excision algorithm
is based on the following ideas: (a) Excise a cube contained inside the AH that
is well adapted to cartesian coordinates; (b) Use a simple but stable boundary
condition at the sides of the excised cube: copying of time derivatives from
their values one grid point out along the normal directions; (c) Use standard
centered (non-causal) differences in all terms except for advection terms on the
shift (those that look like βi∂i ). For these terms we use second order upwind
along the shift direction. These simplifications in excision reduce the complexity
in the algorithm, avoid delicate interpolation issues near the excision boundary,
and have allowed us to make rapid progress.
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4 Numerics

The numerical time integration in our code uses an iterative Crank-Nicholson
scheme with 3 iterations, see e.g. [23]. Derivatives are represented by second
order finite differences on a Cartesian grid. We use standard centered difference
stencils for all terms, except in the advection terms involving the shift vector
(terms that look like βi∂i). For these terms we use second order upwind along the
shift direction. We have found the use of an upwind scheme in such advection-
type terms crucial for the stability of our code. Notice that this is the only place
in our implementation where any information about causality is used (i.e. the
direction of the tilt in the light cones).

At the outer boundary we use a radiation (Sommerfeld) boundary condi-
tion. We start from the assumption that near the boundary all fields behave as
spherical waves, namely we impose the condition

f = f0 +
u(r − vt)

r
. (33)

Where f0 is the asymptotic value of a given dynamical variable (typically 1 for
the lapse and diagonal metric components, and zero for everything else), and
v is some wave speed. If our boundary is sufficiently far away one can safely
assume that the speed of light is 1, so v = 1 for most fields. However, the gauge
variables can easily propagate with a different speed implying a different value
of v (see below where we discuss the gauge conditions).

In practice, we do not use the boundary condition (33) as it stands, but
rather we use it in differential form:

∂tf + v∂rf − v
(f − f0)
r

= 0 . (34)

Since our code is written in Cartesian coordinates, we transform the last condi-
tion to

xi
r
∂tf + v∂if +

vxi
r2

(f − f0) = 0 . (35)

We finite difference this condition consistently to second order in both space and
time and apply it to all dynamic variables (with possible different values of f0
and v) at all boundaries.

There is a final subtlety in our boundary treatment. Wave propagation is not
the only reason why fields evolve near a boundary. Simple infall of the coordinate
observers will cause some small evolution as well, and such evolution is poorly
modeled by a propagating wave. This is particularly important at early times,
when the above boundary condition introduces a bad transient effect. In order to
minimize the error at our boundaries introduced by such non-wavelike evolution,
we allow for boundary behavior of the form:

f = f0 +
u(r − vt)

r
+
h(t)
rn

, (36)
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with h a function of t alone and n some unknown power. This leads to the
differential equation

∂tf + v∂rf −
v

r
(f − f0) =

vh(t)
rn+1 (1− nv) +

h′(t)
rn

� h
′(t)
rn

for large r , (37)

or in Cartesian coordinates

xi
r
∂tf + v∂if +

vxi
r2

(f − f0) �
xih

′(t)
rn+1 . (38)

This expression still contains the unknown function h′(t). Having chosen
a value of n, one can evaluate the above expression one point away from the
boundary to solve for h′(t), and then use this value at the boundary itself.
Empirically, we have found that taking n = 3 almost completely eliminates the
bad transient caused by the radiative boundary condition on its own.

5 Gauge Conditions

We will consider families of gauge conditions that can be used in principle with
any 3+1 form of the Einstein’s equations that allows a general gauge. However,
the specific family we test in this paper is best motivated by considering the
BSSN system introduced above. For the present purposes, of special importance
are the following two properties of this formulation:

• The trace of the extrinsic curvature K is treated as an independent variable.
For a long time it has been known that the evolution of K is directly related
to the choice of a lapse function α. Thus, having K as an independent field
allows one to impose slicing conditions in a much cleaner way.

• The appearance of the “conformal connection functions” Γ̃ i as independent
quantities. As already noted by Baumgarte and Shapiro [19], the evolution
equation for these quantities can be turned into an elliptic condition on the
shift which is related to the minimal distortion condition. More generally, one
can relate the shift choice to the evolution of these quantities, again allowing
for a clean treatment of the shift condition.

Our aim is to look for gauge conditions that at late times, once the physical
system under consideration has settled to a final stationary state, will be able
to drive the coordinate system to a frame where this stationarity is evident. In
effect, we are looking for “symmetry seeking” coordinates of the type discussed
by Gundlach and Garfinkle [24] that will be able to find the approximate Killing
field that the system has at late times. In order to achieve this we believe that
the natural approach is to relate the gauge choice to the evolution of certain
combinations of dynamic quantities in such a way that the gauge will either
freeze completely the evolution of those quantities (typically by solving some
elliptic equations), or will attempt to do so with some time delay (by solving
instead parabolic or hyperbolic equations).
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We will consider the lapse and shift conditions in turn. Special cases of the
gauge conditions that we will introduce here were recently used together with
black hole excision with remarkable results in [7], but as we will show below,
the gauge conditions are so powerful that in the cases tested, they work even
without excision.

5.1 Slicing Conditions

The starting point for our slicing conditions is the “K-freezing” condition ∂tK
=0, which in the particular case when K=0 reduces to the well known “maxi-
mal slicing” condition. The K-freezing condition leads to the following elliptic
equation for the lapse

∇2α = βi∂iK + αKijK
ij , (39)

with ∇2 the Laplacian operator for the spatial metric γij . In the BSSN formu-
lation, once we have solved the elliptic equation for the lapse, the K-freezing
condition can be imposed at the analytic level by simply not evolving K.

One can construct parabolic or hyperbolic slicing conditions by making either
∂tα or ∂2

t α proportional to ∂tK. We call such conditions “K-driver” conditions
(see [25]). The hyperbolic K-driver condition has the form [7]

∂2
t α = −α2f(α) ∂tK = α2f(α)

[
∇2α− βi∂iK − αKijK

ij
]
, (40)

where f(α) is an arbitrary positive function of α. From the above equation it
is clear the lapse obeys a wave equation with a source term. The corresponding
wave speed can be easily seen to be vα = α

√
f(α), which explains the need

for f(α) to be positive. Notice that, depending on the value of f(α), this wave
speed can be larger or smaller than the physical speed of light. This represents no
problem, as it only indicates the speed of propagation of the coordinate system,
i.e. it is only a “gauge speed”. The hyperbolic K-driver condition is closely related
to the Bona-Massó family of slicing conditions [26]: ∂tα = α2f(α)K. Our new
condition has the advantage of allowing for static solutions for which K itself is
non-zero.

In our evolutions, we normally take f = 2/α, since empirically we have found
that such a choice has excellent singularity avoiding properties. Notice that inside
a black hole, where the lapse typically collapses to very small values, this choice
of f implies that the gauge speed vα will be very large, much larger than the
physical speed of light.

5.2 Shift Conditions

In the BSSN formulation, an elliptic shift condition is easily obtained by imposing
the “Gamma-freezing” condition ∂tΓ̃ k=0, or

γ̃jk∂j∂kβ
i +

1
3
γ̃ij∂j∂kβ

k − Γ̃ j∂jβi +
2
3
Γ̃ i∂jβ

j + βj∂jΓ̃ i

−2Ãij∂jα− 2α
(

2
3
γ̃ij∂jtrK − 6Ãij∂jφ− Γ̃ ijkÃjk

)
= 0 . (41)
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Notice that, just as with the K-freezing condition for the lapse, once we have
solved the previous elliptic equations for the shift, the Gamma-freezing condition
can be enforced at an analytic level by simply not evolving the Γ̃ k.

The Gamma-freezing condition is closely related to the well known mini-
mal distortion shift condition [27]. In order to see exactly how these two shift
conditions are related, we write here the minimal distortion condition

∇jΣ
ij = 0 , (42)

where Σij is the so-called “distortion tensor” defined as

Σij :=
1
2
γ1/3∂tγ̃ij , (43)

with γ̃ij the same as before. A little algebra shows that the evolution equation
for the conformal connection functions (27) can be written in terms of Σij as

∂tΓ̃
i = 2∂j

(
γ1/3Σij

)
. (44)

More explicitly, we have

∂tΓ̃
i = 2e4φ

[
∇jΣ

ij − Γ̃ ijkΣjk − 6Σij∂jφ
]
. (45)

We then see that the minimal distortion condition ∇jΣij = 0, and the
Gamma-freezing condition ∂tΓ̃ i = 0 are equivalent up to terms involving first
spatial derivatives of the spatial metric multiplied with the distortion tensor it-
self. In particular, all terms involving second derivatives of the shift are identical
in both cases (but not so terms with first derivatives of the shift).

Just as it was the case with the lapse, we obtain parabolic and hyperbolic shift
prescriptions by making either ∂tβi or ∂2

t β
i proportional to ∂tΓ̃ i. We call such

conditions “Gamma-driver” conditions. The parabolic Gamma driver condition
has the form

∂tβ
i = kp ∂tΓ̃ i , (kp > 0) , (46)

and the hyperbolic one

∂2
t β

i = kh ∂tΓ̃ i − η ∂tβi , (kh, η > 0) , (47)

where kp, kh and η are positive functions of space and time. In the case of the
hyperbolic Gamma-driver we have found it useful to add a dissipation term with
coefficient η. Experience has shown that by tuning the value of this dissipation
coefficient we can manage to almost freeze the evolution of the system at late
times.

An important point that needs to be considered when using the hyperbolic
Gamma-driver condition is that of the gauge speeds. Just as it happened with
the lapse, the use of a hyperbolic equation for the shift introduces new “gauge
speeds” associated with the propagation of the shift. In order to get an idea of
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how these gauge speeds behave, we will consider for a moment the shift con-
dition (47) for small perturbations of flat space (and taking η=0). From the
form of ∂tΓ̃ i given by (27) we see that in such a limit the principal part of the
evolution equation for the shift reduces to

∂2
t β

i = kh

(
δjk∂j∂kβ

i +
1
3
δij∂j∂kβ

k

)
. (48)

Consider now only derivatives in a given direction, say x. We find

∂2
t β

i = kh

(
∂2
xβ

i +
1
3
δix∂x∂xβ

x

)
, (49)

which implies

∂2
t β

x =
4
3
kh∂

2
xβ

x , (50)

∂2
t β

q = kh∂2
xβ

q q �= x . (51)

We can then see that in regions where spacetime is almost flat, the longitudinal
part of the shift propagates with speed vlong = 2

√
kh/3 while the transverse part

propagates with speed vtrans =
√
kh. In all the simulations presented below, we

have chosen:
kh =

3
4
αn1

ψn2
, (52)

with ψ the conformal factor coming from the initial data. The division by ψn2

(in this paper, all simulations are done by n1 = 0 and n2 = 4) helps to keep the
shift small near the vicinity of the horizon. Since far from the black hole both
α and ψ are close to 1, our choice implies that the longitudinal part of the shift
will propagate with a speed of 1 (the speed of light), and the transverse part
will propagate with a speed equal to

√
3/2. At the boundaries, we simply use

the speed of light for all shift components. This will introduce an error for the
transverse components, but in all our simulations those components are typically
very small close to the boundaries.

6 Results

The first example we show is Schwarzschild, written in the standard isotropic
coordinates used in many black hole evolutions. Note that with this initial data
and our starting gauge conditions, the black hole should evolve rapidly. If α and
βi were held fixed at their initial values, the slice would hit the singularity at
t = πM and crash. Instead, α and βi work together with the excision to rapidly
drive the system towards a static state, without any special choice of initial
conditions.

In Fig. 1 we show the radial metric function grr/ψ4 vs. time. The grid covers
an octant with 1283 points (Δx = 0.1M , M = 2). Notice that the metric begins
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Fig. 1. We show the radial metric function grr/ψ4 for a Schwarzschild black hole along
the x−axis, constructed from the cartesian metric components, as it evolves with time.
The upper panel shows the grid-stretching in the metric for singularity avoiding slicing
with vanishing shift and no excision, while the lower panel shows the metric for the new
gauge conditions with an excision box inside a sphere of radius 1M . Note the difference
in the vertical scales. Without shift and excision the metric grows out of control, while
with shift and excision a peak begins to form initially as grid stretching starts, but
later freezes in as the shift drives the black hole into a static configuration (note the
time labels)

to grow, as it does without a shift, but as the shift builds up the growth slows
down significantly. At this stage, the system is effectively static, even though
we started in the highly dynamic isotropic coordinates. We also show the time
development of α and βr in Fig. 2, which evolve rapidly at first but then ef-
fectively freeze, bringing the system towards an almost static configuration by
t = 10M . The evolution then proceeds only very slowly until the simulation is
stopped well after t = 200M .

In Fig. 3 we show the AH mass MAH, determined with a 3D AH finder [28].
For comparison, we also show the value of MAH obtained from a highly resolved
2D simulation with zero shift and no excision, and for the 3D run without shift.
While the 3D simulation with shift and excision continues well beyond t =
200M , the 2D result becomes very inaccurate and the code crashes due to axis
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Fig. 2. We show the lapse and shift for the excision evolution of a Schwarzschild black
hole. After around 10M, the lapse and shift freeze in as the system is driven to a static
configuration. The size of the excision box was allowed to grow with the change in the
coordinate location of the AH

instabilities by t = 150M , and the 3D run without shift crashes already by t =
50M . Notice that in the 2D case, after around t = 35M ,MAH grows rapidly due
to numerical errors associated with grid stretching, and the AH finder ultimately
fails as the code crashes. With excision and our new gauge conditions, the 3D
run has less than a few percent error by t = 200M , while the 2D case has more
than 100% error before it crashes at t ≈ 150M . For the excision run, notice also
that while there is some initial evolution in the metric and the coordinate size
of the AH (see Figs. 1 and 2) the AH mass changes only very little. With new
gauge conditions, we also find out that the 3D run without excision produces
same results as with excision!

Next, we turn to a truly dynamic, even-parity distorted black hole. This
system contains a strong gravitational wave that distorts the black hole, causing
it to evolve, first nonlinearly, and then oscillating at its quasi-normal frequency,
finally settling down to a static Schwarzschild black hole. This provides a test
case for our techniques with dynamic, evolving black hole spacetimes, and allows
us to test our ability to extract gravitational waves with excision for the first
time. In this case, in the language of [15], we choose the Brill wave parameters
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Fig. 3. The solid and long dashed lines show the development of the AH mass MAH,
determined through a 3D AH finder, for the excision and no no excision simulation of
a Schwarzschild black hole shown above, while the dot-dashed and dot lines show the
AH mass obtained using 2D and 3D codes with zero shift and no excision. The 2D
code crashes at around t = 150M , the 3D run without shift crashes around t = 50M ,
while the 3D runs with shift and excision (or) no excision reach an effectively static
state and the error remains less than a few percent even after t = 200M

to be Q0 = 0.5, η0 = 0, σ = 1, corresponding to a highly distorted black hole
with M = 1.83.

In Fig. 4 we show the AH mass MAH as a function of time for the distorted
black hole simulations carried out in both 2D and 3D. MAH grows initially as a
nonlinear burst of gravitational waves is absorbed by the black hole, distorting
it strongly, but then levels off as the black hole goes into a ring-down phase
towards Schwarzschild.

In the 3D cases, the dynamic gauge conditions and excision or no excision
quickly drive the evolution towards an almost static configuration, as the system
itself evolves towards a static Schwarzschild black hole. The evolution is contin-
ued until terminated at around t = 300M . Even in this highly dynamic system,
no specialized form of initial data or lapse and shift are needed; our gauge choices
naturally drive the system to a static state as desired. To our knowledge, dis-
torted black holes of this type have never been evolved for so long, nor with such
accuracy, in either 2D or 3D. By comparison, in the more highly resolved 2D case
with zero shift and no excision, the familiar grid stretching effects allowed by the
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Fig. 4. We show the AH masses MAH for a black hole with even-parity distortion
for the 2D (no excision, no shift) and 3D (excision and no excision, shift) cases. The
3D result continues well past 300M , while the 2D result becomes very inaccurate and
crashes by t = 100M

gauge choice lead to highly inaccurate evolutions after some time with the error
in MAH again approaching 100% when the code finally crashes at t ≈ 100M .

In Fig. 5, we show the results of extracting waves from the evolution of this
highly distorted black hole. Using the standard gauge-invariant waveform extrac-
tion technique, the Zerilli function is shown for both the 2D and 3D simulations
discussed above. There is a slight but physically irrelevant phase difference in the
two results due to differences in the slicing; otherwise the results are remarkably
similar.

This shows conclusively that the excision or no excision and live gauge con-
ditions do not adversely affect the waveforms, even if they carry a small amount
of energy (around 10−3MADM in this case).

We now turn to a rather different type of distorted black hole, including ro-
tation and general even- and odd-parity distortions. In the language of [15,16],
the parameters for this simulation are Q0 = 0.5, η0 = 0, σ = 1, J = 35, cor-
responding to a rotating distorted black hole with M = 7.54 and an effective
rotation parameter J/M2 = 0.62. Previously, such data sets could be evolved
only to about 40M [14]. Again, for the purposes of this paper we have chosen
an axisymmetric case so that we can compare the results to those obtained with
a 2D code. Since this example is much more demanding, we have found it im-
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Fig. 5. The solid and long dashed lines show the result of the � = 2, m = 0 waveform
extraction at a radius 5.45M for the even-parity distorted black hole described on the
text, while the dashed line shows the result of the same simulation carried out in the
2D code. We also show a fit to the two lowest QNM’s of the black hole for 2D and 3D
separately, using numerical data from t = 9M to t = 80M

portant in order to increase the accuracy of our runs to perform a single initial
maximal solve to reduce the initial gauge dynamics. The gauge conditions used
work well even in the presence of rotation: the shift drives the system towards a
static Kerr black hole spacetime after the true dynamics settle down. The metric
functions (not shown) evolve in a similar way to those shown before, essentially
freezing at late times.

In Fig. 6, we show the extracted waveforms, now computed using the imagi-
nary part of the Newman-Penrose quantity Ψ4 (e.g. [2]), which includes contribu-
tions from all �−modes at the same time. The results from the 2D and 3D codes
agree very closely, except for a slight phase shift due to slicing differences, until
the 2D code becomes inaccurate and later crashes. The 3D simulation continues
well beyond this point, and is terminated at t = 140M .

Figure 7 shows the snapshots of the apparent horizon with shift vectors for
rotating 3D distorted. T shows the coordinate time so that the last picture
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Fig. 6. The solid and long dashed lines show the a imaginary part of ψ4 at a radius
3.94M and θ = φ = π/4 for rotating 3D distorted black hole, while the dot-dash line
shows the same initial date by the 2D code which crashes around 60M

shows them at around t = 40M . As the shift drives the system towards a static
Kerr black hole spacetime, horizon grows until certain time and then oscillates
towards a static Kerr black hole.

7 Conclusions

We have extended recently developed 3D black hole excision techniques, using a
new class of live gauge conditions that dynamically drive the black hole system
towards an essentially static state at late times, when the system itself settles
to a stationary Kerr black hole. Our techniques have been tested on highly dis-
torted, rotating black holes, are shown to be very robust, and require no special
coordinate systems or special forms of initial data. For the first time, excision
is tested with wave extraction, and waveforms are presented and verified. The
results are shown to be more accurate, and much longer lived, than previous 3D
simulations and even better resolved 2D simulations of the same initial data.
Such improvements in black hole excision are badly needed for more astrophys-
ically realistic black hole collision simulations, which are in progress and will be
reported elsewhere.

Furthermore, we have found that the new gauge conditions can bring the
evolution to an almost static state even without excision. Although we could



Gauge Conditions 157

Fig. 7. We show snapshots of the apparent horizon with shift vectors for rotating 3D
distorted black hole. T shows the coordinate time so that the last picture shows them
at around t = 40M

show some primitive results, we are currently investigating properties of new
gauge conditions [29]. We will also report these results in further publications.
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Numerical Relativity
with the Conformal Field Equations

Sascha Husa

Max-Planck-Institut für Gravitationsphysik, 14476 Golm, Germany

Abstract. I discuss the conformal approach to the numerical simulation of radiating
isolated systems in general relativity. The method is based on conformal compactifica-
tion and a reformulation of the Einstein equations in terms of rescaled variables, the
so-called “conformal field equations” developed by Friedrich. These equations allow to
include “infinity” on a finite grid, solving regular equations, whose solutions give rise
to solutions of the Einstein equations of (vacuum) general relativity. The conformal
approach promises certain advantages, in particular with respect to the treatment of
radiation extraction and boundary conditions. I will discuss the essential features of
the analytical approach to the problem, previous work on the problem – in particu-
lar a code for simulations in 3+1 dimensions, some new results, open problems and
strategies for future work.

1 Introduction

In order to understand the physical content of the theory of general relativity, it
is desirable to both mathematically understand its solutions and observationally
understand the physical phenomena for which the theory is relevant. The latter
effort typically requires predictions from the theory, both qualitative and quan-
titative – such as gravitational wave templates or binary pulsar deceleration
parameters. The lack of genericity in available exact solutions then naturally
leads to the use of approximation methods such as post-Newtonian approxi-
mations, perturbation theory or numerical analysis, which allows very general
non-perturbative approximations. Concrete solutions do however also play an
important role in the quest for a mathematical understanding of the solution
space. The experience gained from such solutions can suggest theorems, test
conjectures, or lead to the discovery of previously unknown phenomena. For
some particularly interesting examples see [1], [2] or [3]. The construction and
study of solutions, be it with approximate or exact methods, obviously profits
from a sound mathematical basis in the form of well-posed equations, analytic
estimates and the likes. Eventually – hopefully – it will also profit from obser-
vational evidence!

In the following I will discuss a particular approach to the numerical solu-
tion of the Einstein field equations, which addresses the problems associated
with the treatment of asymptotic regions by conformal compactification. The
interest in asymptotic regions is rooted in the problem of describing isolated
systems. Physical intuition suggests that many astrophysical processes (whether
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they are of actual astrophysical relevance or rather hypothetical) should essen-
tially be independent of the large-scale structure of the universe, or, say, the
local galaxy. The idealization of an isolated system, where the geometry ap-
proaches a Minkowski geometry at large distances, thus forms the basis for the
general-relativistic analysis of processes which are essentially of non-cosmological
nature. The mathematical formalization of the physical idea of isolated systems
is the concept of asymptotically flat spacetimes. This formalization is already
nontrivial, due to the lack of a preferred background geometry or coordinate
system – with respect to which one could define “distance” and the appropri-
ate limits. Conformal compactification, however, renders possible a discussion
of asymptotically flat spacetimes in terms of local differential geometry. In this
approach, pioneered by Penrose [4], an unphysical Lorentzian metric gab is in-
troduced on an unphysical manifold M which gives rise to the physical metric
g̃ab by the rescaling g̃ab = Ω−2gab. The physical manifold M̃ is then given by
M̃ = {p ∈ M|Ω(p) > 0}. In this picture physical “infinity” corresponds to
a three-dimensional boundary of a four-dimensional region in M, defined by
Ω = 0. Limiting procedures and approximations can thus be replaced by local
differential geometry on the boundary.

In gravitational theory, quantities such as the total mass, (angular) momen-
tum or emitted gravitational radiation can only consistently be defined at “in-
finity”. In the conformal approach the unambiguous extraction of gravitational
waves from a numerical spacetime is straightforward. In the “traditional” ap-
proach to dealing with asymptotic falloff in numerical relativity, where one in-
troduces an arbitrary spatial cutoff, matters are much more complicated and
ambiguities are introduced which one would have to get rid off by complicated
limiting procedures. Without at least being able to define a clean concept of radi-
ation leaving or entering a system, it is furthermore very hard to define physically
realistic and consistent boundary conditions at finite distance. The traditional
approach is thus not completely satisfactory both from a mathematical but also
from a practical point of view. Here we discuss the principal ideas of the envi-
sioned “conformal cure”, the technical and conceptual problems associated with
it and the current status of this approach.

It is easy to see that the conformal cure cannot be straightforward, by writing
Einstein’s vacuum equations in terms of Ω and gab:

G̃ab[Ω−2gab] = Gab[gab] +
2
Ω

(∇a∇bΩ + gab∇c∇cΩ) +
3
Ω2 gab (∇cΩ)∇cΩ . (1)

This expression is singular for Ω = 0, multiplication by Ω2 also does not help
here because then the principal part of the partial differential equations encoded
in Gab would degenerate at Ω = 0. The conformal compactification approach
thus cannot be carried to the level of the field equations in a straightforward
way. This step however has been achieved by Friedrich, who has developed a
judicious reformulation of the equations [5,6,7,8,9].

These conformal field equations are regular equations for gab and certain
additional independent variables.
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In analytical work, such global methods have proven to provide essential
simplifications leading to new results and insights. Already by providing a dif-
ferent point of view on some of the essential problems in numerical relativity,
the conformal picture is quite helpful and can stimulate new ideas. Certainly, we
desire more – to make this approach also a practical tool. There is significant
hope, that global methods will eventually show advantages for practical numeri-
cal work and, despite the small number of researchers involved so far (may there
be more!), some significant progress in this direction has been made.

In the present chapter I will try to sketch the present status of the quest
for the conformal cure and discuss some important open questions. We will
start with a brief introduction of the concepts of asymptotic flatness in terms
of conformal compactification in Sect. 2, highlighting some important features
of “future null infinity” and then discuss the conformal field equations. In Sect.
3 I will discuss some explicit examples of compactifying Minkowski spacetime,
both to paint a more concrete picture of our scenario and to set the arena for
some numerical code tests. Sect. 4 contains a brief overview of the history of
numerical work on the conformal field equations, leading to a description of
a 3D code written by Hübner [10,11,12,13]. New results from 3D calculations
performed with this code will be presented in Sect. 5 and a discussion will be
given in Sect. 6, concluding with a roadmap for future work.

2 Compactification and the Mathematical Description
of Isolated Systems

The material in this section is intended to present some essential ideas in a
condensed form. The reader should be aware that I am not doing justice here to
subtleties and long history of the mathematical description of isolated systems
in general relativity – rather this section intends to motivate to look into more
complete reviews such as [14,15,16].

2.1 Asymptotic Flatness and Compactification

As noted above the formulation of the concept of asymptotic flatness is far from
straightforward in GR, due to the absence of a background metric or preferred
coordinate system, in terms of which falloff rates can be specified. A resolution
of this problem is provided by a definition of asymptotic flatness, where, after
a suitable conformal rescaling of the metric, “points at infinity” are added to
the manifold. One thus works on a compactified auxiliary manifold and local
differential geometry can be used to study the asymptotic properties of the
gravitational field. We will give a simple definition of asymptotic flatness here,
which for our purposes catches all essential features. For alternative definitions
and more detailed explanations compare for example [4,14,15,17].

Definition 1 (asymptotic simplicity)
A smooth spacetime (M̃, g̃ab) is called asymptotically simple, if there exists
another smooth spacetime (M, gab) and a scalar function Ω such that:
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1. M̃ is an open submanifold of M with smooth boundary ∂M̃ = I (Scri).

2. gab = Ω2g̃ab on M̃, with Ω > 0 on M̃, Ω = 0 on I and ∇aΩ �= 0 on I .

3. Every null geodesic in M̃ acquires two end points on I .

Definition 2 (asymptotic flatness)
Asymptotically simple spacetimes are called asymptotically flat if their Ricci
tensor R̃ab vanishes in a neighbourhood of I .

Examples of asymptotically simple spacetimes, which are not asymptotically
flat are the de Sitter and anti-de Sitter solutions. Correspondingly to asymptoti-
cally flat spacetimes one can consider asymptotically de Sitter and anti-de Sitter
spacetimes. Note that the completeness condition 3 in Def. 1, which ensures that
the entire boundary is included, excludes black-hole spacetimes. For modifica-
tions to weaken condition 3, thus allowing black holes, see the definitions of [18]
or [15]. For example, the definition of weak asymptotic simplicity [18] requires
condition 3 to hold only in a neighbourhood of I . See e.g. [15] for a discussion of
asymptotic flatness at spacelike infinity (i.e. the part of infinity which is reached
along spacelike geodesics) versus null infinity (i.e. the part of infinity which is
reached along null curves). The notion of asymptotic flatness at timelike infinity
does not make much sense in a general situation, because then all energy would
have to be radiated away, leaving only flat space behind – excluding black holes
or “stars”. For weak data however, in vacuum say, where all radiation eventually
disperses, once expects asymptotic flatness to hold also at timelike infinity, this
issue will be discussed below in application to concrete spacetimes.

The notion of asymptotic flatness of isolated systems turns out to be inti-
mately related to the possibility of defining the total energy-momentum for such
systems in general relativity – remember that no well-defined local energy den-
sity of the gravitational field is known (compare e.g. Sect. 11.2 of the textbook of
Wald [15]). However, total energy-momentum quantities, which transform as a
4-vector under asymptotic Lorentz transformations, can be assigned to null and
spatial infinity of asymptotically flat spacetimes. If a manifold has more than
one asymptotically flat end, e.g. in the presence of wormholes of the Einstein-
Rosen-bridge type, then different energy-momenta can be associated with each
of these asymptotic regions.

The expression for the energy-momentum four-vector at spatial infinity has
been given first by Arnowitt, Deser and Misner in 1962 [19] in the context of
the Hamiltonian formalism and is usually called the ADM momentum, the time
component being called ADM mass. The ADM energy corresponds to the energy
of some Cauchy surface, i.e. a snapshot of the spacetime at some fixed time. It is
a constant of motion and can therefore be expressed in terms of the initial data
on an asymptotically flat Cauchy hypersurface.

The expression for the energy-momentum at null infinity, usually referred to
as the Bondi energy-momentum, can be associated with a fixed retarded time,
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i.e. some asymptotically null surface. The decrease of this quantity measures
the energy-momentum carried away by gravitational radiation. For a brief in-
troduction and references to original work on different definitions of the Bondi
mass see e.g. the textbook of Wald [15]. The formulation most appropriate for
usage in numerical codes based on the conformal field equations was given by
Penrose [4], and defines the Bondi mass in terms of the behaviour of certain pro-
jections of the Weyl tensor at I + and the shear of the outgoing congruence of
null geodesics orthogonal to I in the gauge defined below by (2). It was already
shown in 1962 by Bondi, van der Burg and Metzner [20] that the Bondi mass
MB can only decrease with time: gravitational radiation always carries positive
energy away from a radiating system. Note that this means in particular, that
while compactification at spatial infinity would lead to a “piling up” of waves,
at I + this effect does not appear. In the compactified picture the waves leave
the physical spacetime through the boundary I +.

A fundamental issue of general relativity is the positivity of the ADM and
Bondi energies. Although it is trivial to write down a metric with negative mass
if no conditions on the energy-momentum tensor are imposed, for reasonable
matter fields with nonnegative energy density (thus satisfying the dominant
energy condition), non-negativity of the ADM and Bondi energies is expected
on physical grounds: if the energy of an isolated system could be negative, it
would most likely be unstable and decay to lower and lower energies. Indeed, a
proof of the positive definiteness of the ADM energy has been given in 1979 by
Schoen and Yau [21] (several simplified proofs have been given later) and was
extended to the Bondi mass in 1982 by Horowitz and Perry [22].

2.2 What is I ?

We will now have a closer look at I and discuss some of its features, which
will allow us to understand the basic ideas of radiation extraction and help us to
understand some issues related with choosing boundary conditions for numerical
solutions of the conformal field equations.

Looking at (1) and multiplying by Ω2, one can see that for a vacuum space-
time, G̃ab = 0, (∇cΩ)∇cΩ = 0 at I , which thus must consist of null surfaces.
In fact, one can then prove (see e.g. [17]), that

1. I has two connected components, each with topology S2 × R.

2. The connected components of I are smooth null hypersurfaces in M and as
such are generated by null geodesics.

3. The congruence of null geodesic generators of I is shear free.

The two connected components are called future null infinity (I +) and past
null infinity (I −) and provide the future and past endpoints for null geodesics
in M̃. In a naive picture they could be viewed as emanating from a point i0
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which represents spatial infinity1. These features will become more graphic when
dealing with explicit examples below.

Note that there is gauge freedom in the choice of the conformal factor: one
is free to rescale the conformal factor Ω by some ω > 0 such that Ω̂ = ωΩ,
ĝab = ω2gab = Ω̂2g̃ab. It is an interesting exercise (see Sect. 11.1 of [15]) to prove
that outside any neighbourhood of i0 – on I + say – one can always use this
conformal gauge freedom to achieve

∇̂a∇̂bΩ̂ = 0 on I + , (2)

where ∇̂a is the derivative operator compatible with the metric ĝab. This con-
formal gauge implies, that the null tangent na = ĝab∇bΩ̂ to the null geodesic
generators of I satisfies the affinely parameterized geodesic equation,

na∇̂an̂
b = 0 . (3)

Consequently, expansion of the generators of I vanishes in addition to the shear
and twist (na is a gradient). Using the remaining gauge freedom of ω, we can
choose coordinates such that the metric on I takes the form

dŝ2|I + = 2dΩ du+ dθ2 + sin2 θdφ2 , (4)

where u is the affine parameter of the null geodesic generators, scaled such
that na∇̂au = 1 (see e.g. Chap. 11 of [15]). The cuts2 of I of constant u thus
become metric spheres. The coordinate u is generally known as Bondi parameter
or Bondi time. The conformal gauge (2) and the coordinates (4) prove very useful
in the analysis of the geometry in a neighbourhood of I – in particular for the
extraction of radiation. The existence of a natural time coordinate (at least up
to affine transformations along each generator) is very interesting for numerical
applications, where at least asymptotically one can get rid of much of the slicing
arbitrariness of the interior region. It is nontrivial but rather straightforward
to actually (numerically) find this gauge of I +, which is also required by the
standard formulas to compute the energy-momentum at I + and the emitted
radiation – to be given below.

Before discussing how to compute the radiation, it is useful to idealize a de-
tector (here I will follow the discussion in [24]). In physical space – far away from
the sources – we could think of a detector as a triad of spacelike unit vectors
attached to the worldline of some (timelike) observer. Let us further assume for
simplicity that the observer moves along a timelike geodesic parametrized by
proper time and that the triad is transported by Fermi-Walker transport. It is
not hard to show – see Frauendiener [24], that taking the appropriate limit in
the compactified spacetime, the observer worldline converges to a null geodesic
1 The structure of i0 is however quite subtle, significant progress toward its under-

standing in terms of the field equations has recently been achieved by Friedrich
[8,23]

2 A cut of I is a two-dimensional spacelike cross section of I which meets every
generator once.
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generator of I +. Taking the limit along a Cauchy surface it converges to the
point i0, where one could naively expect an observer to end up when shifted to
larger and larger distances (this limit is however not appropriate in the context
of computing the radiation). Furthermore, the proper time parameter of the
observer converges to Bondi time. The arbitrariness of boosting the observers
is reflected in the affine freedom of choosing the Bondi parameter at I . The
description of I + thus could be condensed into the statement that it idealizes
us – the observers of astrophysical phenomena happening far away. By working
with the idealization, the approximations and ambiguities associated with de-
tectors at a finite distance have transformed into a surprisingly simple geometric
picture! Note that this simplification has to be taken with the typical care re-
quired in the treatment of idealizations in (theoretical) physics: under practical
circumstances, e.g. computing the actual signal at a gravitational wave detector,
I more realistically corresponds to an observer that is sufficiently far way from
the source to treat the radiation linearly, but not so far away that cosmological
effects have to be taken into account. In order to compute the detected signal in a
realistic application, cosmological data and the fact that an earthbound detector
moves in a complicated way relative to the source have to be considered.

We will next discuss a “detector-frame” adapted to I + – the commonly used
Bondi frame. For a much more complete discussion of Bondi-systems, see e.g.
the excellent review by Newman and Tod [14]. There a characteristic framework
is used to set up the Bondi frame in a whole neighbourhood of I +, which is
necessary to compute derivatives, entering e.g. the definition of the spin coeffi-
cient σ defined below in (5). In the current approach, the Bondi system is only
defined at I +: initial data can be set up, such that all necessary quantities can
be propagated along the generators of I + [25].

With I + being a null surface, it is most natural to use a null frame, consisting
of 2 null vectors and 2 spacelike vectors xa, ya, which can be considered as the
idealizations of the arms of an interferometric gravitational wave detector. The
vectors xa, ya are commonly treated in the form of two complex null vectors
ma, m̄a, with

ma = xa + iya, mam̄a = 1 ,

where xa and ya are real vectors tangent to the cuts of I +. The null vectors
are taken as the affine tangent na and la = ∇̂au, which satisfy

nala = −1 .

The tetrad vectors la, ma and m̄a are parallely propagated along the generators,
which yields transport equations that define them on all of I + once initial values
are chosen.

The Bondi-mass can then be computed in terms of the spin-coefficient σ and
the rescaled Weyl tensor components ψ2 and ψ4:

σ = ĝablamc∇̂cm
b , (5)

ψ2 = d̂abcdlambm̄cnd , (6)

ψ4 = d̂abcdnam̄bncm̄d . (7)
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In terms of these quantities the Bondi mass can be defined as

MB = −
√
A

√
4π

3

∫
(ψ2 + σ ˙̄σ) dA , (8)

the outgoing radiation can be computed to be

ṀB = −
√
A

√
4π

3

∫
(σ̇ ˙̄σ) dA , (9)

where A is the area of the cuts of I + and ḟ = na∇̂af = ∂uf . Furthermore,

σ̈ = −ψ̄4

can be used to evolve σ, where both σ and σ̇ can be computed on the initial
slice.

This procedure has been implemented by Hübner and Weaver [25] for 2D
codes and the 3D code used to obtain the results in Sect. 5 and has been tested
and proven accurate for several types of spacetimes [25]. Frauendiener describes
his implementation and some results in [26]. There are two essential problems
in these implementations: first of all, the gauge conditions will not usually re-
sult in a slicing of I + by cuts of constant Bondi time u. This means that
interpolation has to be used between different slices of the numerical evolution.
Second, in those formulations of the conformal field equations that have so far
been used in numerical implementations, the conformal factor Ω is an evolution
variable and not specified a priori, I will in general not be aligned with grid
points. This results in further technical complications and an additional need
for interpolation. When dealing with the physically interesting case of a I + of
spherical topology, at least two patches have to be used to represent the Bondi
tetrad (la, na,ma, m̄a). Frauendiener has achieved to control the movement of
I + through the grid by the gauge choice for his formulation [26], in particu-
lar the shift vector can be chosen such that I does not change its coordinate
location.

2.3 The Conformal Field Equations

Several formulations of the conformal field equations are available, the main
difference being whether the conformal factor Ω can be specified a priori or is
determined as a variable by the equations. In the original formulation [5,6] and
its descendants [7,10,27] Ω (and derivatives) are evolved as dependent variables.
All existent numerical codes are based on equations of this type. A later version
of the equations allows to fix Ω a priori and has been used to develop a new
treatment of spatial infinity i0 [8,23,9]. However, the formulation and treatment
of these equations is more involved, and its numerical solution has not yet been
attempted.

In the following we discuss a metric based formulation of the “original” ver-
sion of the conformal field equations, which forms the basis for Hübner’s codes
[10,11,12,13].
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When deriving the conformal field equations, it turns out to be useful to start
with the splitting of the Riemann tensor into its trace-free (the Weyl tensor) and
trace (Ricci tensor and scalar) parts. Additionally we define the tracefree Ricci
tensor R̂ab = Rab − gabR/4 and the rescaled Weyl tensor

dabc
d = Ω−1 Cabc

d . (10)

The requirement that the physical scalar curvature R̃ vanishes implies

6Ω∇a∇aΩ = 12 (∇aΩ) (∇aΩ)−Ω2R , (11)

Note that this equation is not manifestly regular at Ω = 0, but it is actu-
ally possible to show that if (11) is satisfied at one point, then by virtue of
(12,13,14,17,18), to be given below, it has to be satisfied everywhere. The whole
system (11,12,13,14, 17,18) is then regular in the sense that this point does not
have to be located at I +. The vacuum Einstein equations R̃ab = 0 then yield

∇a∇bΩ =
1
4
gab∇c∇cΩ −

1
2
R̂abΩ . (12)

Finally, commuting covariant derivatives in the expression

gbc∇c∇b∇aΩ

and then using (12) again yields

1
4
∇a

(
∇b∇bΩ

)
= −1

2
R̂ab∇bΩ − 1

24
Ω∇aR−

1
12
∇aΩR . (13)

Equations for the metric can be obtained by the identity

Rabc
d = Ωdabcd +

(
gcaR̂b

d − gcbR̂ad − gdaR̂bc + gdbR̂ac
)
/2

+
(
gcagb

d − gcbgad
) R

12
, (14)

which defines the Weyl tensor. Expressing the Riemann tensor Rabcd in terms
of the metric and its derivatives (or the Christoffel quantities in a first order
formalism) yields the desired equations. Note that for the physical Riemann
tensor the vacuum Einstein equations imply R̃abcd = C̃abcd.

We still miss differential equations for dabcd and R̂ab. These can be obtained
from the Bianchi identities ∇[aRbc]d

e, which in terms of the Weyl and tracefree
Ricci tensors imply

∇dC̃abc
d = 0 (15)

for the Weyl tensor of a vacuum spacetime (R̃ab = 0) and

∇bR̂a
b =

1
4
∇aR . (16)

While the Weyl tensor is conformally invariant,

C̃abc
d = Cabcd ,
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this invariance does not hold for (15). Instead however one can show that

∇̃dC̃abc
d = Ω∇d

(
dabc

d
)
,

which implies
∇edabc

e = 0 , (17)

if the vacuum Einstein equations hold in the physical spacetime.
The Bianchi identity combined with the splitting (14) implies

∇aR̂bc −∇bR̂ac = − 1
12
(
(∇aR) gbc − (∇bR) gac

)
− 2 (∇dΩ) dabcd . (18)

Then (11,12,13,14,17,18) constitute the conformal field equations for vacuum
general relativity. Here the Ricci scalar R of gab is considered a given function
of the coordinates. For any solution (gab, R̂ab, dabcd, Ω), R̂ab is the traceless part
of the Ricci tensor and Ω dabcd the Weyl tensor of gab. Note that the equations
are regular even for Ω = 0.

The 3+1 decomposition of the conformal geometry can be carried out as
usual in general relativity, e.g.

gab = hab − nanb = Ω2(h̃ab − ñañb) ,

where hab and h̃ab are the Riemannian 3-metrics induced by gab, respectively g̃ab,
on a spacelike hypersurface with unit normals na and equivalently na = Ω ña
(our signature is (−,+,+,+)). The relation between the extrinsic curvatures
(k̃ab = Lñh̃ab/2, kab = Lnhab/2) is then easily derived as kab = Ω(k̃ab +Ω0h̃ab),
where Ω0 = na∇aΩ.

The additional variables R̂ab and ddabc can be decomposed into spatial objects
by

(0,1)R̂a = nbhacR̂bc , (0,1)R̂ab = hachbdR̂cd ,

Eab = defcdheanfhcbnd , Bab = d∗
efcdh

e
an

fhcbn
d ,

where Eab and Bab are called the electric and magnetic components of the
rescaled Weyl tensor dabcd.

Note that for regular components of hab and kab, the corresponding compo-
nents of h̃ab and k̃ab with respect to the same coordinate system will in general
diverge due to the compactification effect. However for the coordinate indepen-
dent traces k = habkab, k̃ = h̃abk̃ab of the extrinsic curvatures we get

Ωk = (k̃ + 3Ω0) ,

which can be assumed regular everywhere. Note that at I , k̃ = −3Ω0. Since
I + is an ingoing null surface (with (∇aΩ)(∇aΩ) = 0 but ∇aΩ �= 0 ), we have
that Ω0 < 0 at I +. It follows that k̃ > 0 at I +. We will thus call regular
spacelike hypersurfaces in M hyperboloidal hypersurfaces, since in M̃ they are
analogous to the standard hyperboloids t2 − x2 − y2 − z2 = 3/k̃2 in Minkowski
space, which provide the standard example. Since such hypersurfaces cross I
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but are everywhere spacelike in M, they allow to access I and radiation quan-
tities defined there by solving a Cauchy problem (in contrast to a characteristic
initial value problem which utilizes a null surface slicing). Note that in a glob-
ally hyperbolic physical spacetime, hyperboloidal hypersurfaces will determine
the future of the physical spacetime, but not all of its past, and therefore we call
our studies semiglobal.

The timelike vector ta = (∂/∂t)a is decomposed in the standard way into a
normal and a tangential component:

ta = Nna +Na, Nana = 0 . (19)

N is called the lapse function, because it determines how fast the time evolution
is pushed forward in the direction normal to S and thus determines “how fast
time elapses”. The tangential componentNa,Nana = 0, shifts spatial coordinate
points with time evolution, accordingly Na is called shift vector. The lapse N
and shift Na are not dynamical quantities, they can be specified freely and
correspond to the arbitrary choice of coordinates: the lapse determines the slicing
of spacetime, the choice of shift vector determines the spatial coordinates.

We will not discuss the full 3 + 1 equations here for brevity, but rather
refer to [10]. Their most essential feature is that they split into constraints plus
symmetric hyperbolic evolution equations [10]. The evolution variables are hab,
kab, the connection coefficients γabc, (0,1)R̂a, (0,1)R̂ab, Eab, Bab, as well as Ω, Ω0,
∇aΩ, ∇a∇aΩ – in total this makes 57 quantities. In addition the gauge source
functions q, R and Na have to be specified. In order to guarantee symmetric
hyperbolicity, they are given as functions of the coordinates. Here q determines
the lapse as N = eq

√
deth and Na is the shift vector. The Ricci scalar R can be

thought of as implicitly steering the conformal factor Ω.
The constraints of the conformal field equations (see (14) of [10]) are regular

equations on the whole conformal spacetime (M, gab), but they have not yet
been cast into a standard type of PDE system, such as a system of elliptic PDEs
(recently however, some progress in this direction has been achieved by Butscher
[28]). Therefore some remarks on how to proceed in this situation are in order.
A possible resolution is to resort to a 3-step method [11,29,30]:

1. Obtain data for the Einstein equations: the first and second fundamental forms
h̃ab and k̃ab induced on Σ̃ by g̃ab, corresponding in the compactified picture
to hab, kab and Ω and Ω0. This yields so-called “minimal data”.

2. Complete the minimal data on Σ̄ to data for all variables using the conformal
constraints – in principle this is mere algebra and differentiation.

3. Extend the data from Σ̄ to Σ in some ad hoc but sufficiently smooth and
“well-behaved” way.

In order to simplify the first step, numerical implementations [11,12,30] so
far have been restricted to a subclass of hyperboloidal slices where initially k̃ab
is pure trace, k̃ab = h̃abk̃/3. The momentum constraint

∇̃bk̃ab − ∇̃ak̃ = 0 (20)
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then implies k̃ = const. �= 0. We always set k̃ > 0. In order to reduce the
Hamiltonian constraint

(3)R̃+ k̃2 = k̃abk̃ab

to one elliptic equation of second order, we use a modified Lichnerowicz ansatz

h̃ab = Ω̄−2φ4hab

with two conformal factors Ω̄ and φ. The principal idea is to choose hab and Ω̄
and solve for φ, as we will describe now. First, the “boundary defining” function
Ω̄ is chosen to vanish on a 2-surface S – the boundary of Σ̄ and initial cut of I
– with non-vanishing gradient on S. The topology of S is chosen as spherical for
asymptotically Minkowski spacetimes. Then we choose hab to be a Riemannian
metric on Σ, with the only restriction that the extrinsic 2-curvature induced by
hab on S is pure trace, which is required as a smoothness condition [29]. With
this ansatz h̃ab is singular at S, indicating that S represents an infinity. The
Hamiltonian constraint then reduces to the Yamabe equation for the conformal
factor φ:

4 Ω̄2Δφ− 4 Ω̄(∇aΩ̄)(∇aφ)−
(

1
2

(3)R Ω̄2 + 2Ω̄ΔΩ̄ − 3(∇aΩ̄)(∇aΩ̄)
)
φ =

1
3
k̃2φ5 .

This is a semilinear elliptic equation – except at S, where the principal part
vanishes for a regular solution. This however determines the boundary values as

φ4 =
9
k̃2

(∇aΩ̄)(∇aΩ̄) . (21)

Existence and uniqueness of a positive solution to the Yamabe equation and the
corresponding existence and uniqueness of regular data for the conformal field
equations using the approach outlined above (assuming the “pure trace smooth-
ness condition) have been proven by Andersson, Chruściel and Friedrich [29].

If the Yamabe equation is solved numerically, the boundary has to be chosen
at S, the initial cut of I , with boundary values satisfying (21). If the equation
were solved on a larger grid (conveniently chosen to be Cartesian), boundary
conditions would have to be invented, which generically would cause the solu-
tion to lack sufficient differentiability at S, see Hübner’s discussion in [11]. This
problem is due to the degeneracy of the Yamabe equation at S. Unfortunately,
this means that we have to solve an elliptic problem with spherical boundary.

The constraints needed to complete minimal initial data to data for all evolu-
tion variables split into two groups: those that require divisions by the conformal
factor Ω to solve for the unknown variable, and those which do not. The latter do
not cause any problems and can be solved without taking special care at Ω = 0.
The first group, needed to compute (1,1)R̂, Eab and Bab, however does require
special numerical techniques to carry out the division and furthermore it is not
known whether solving them on the whole Cartesian time evolution grid actu-
ally allows solutions which are sufficiently smooth across I . Thus, at least for
these we have to find some ad-hoc extension. There are however also examples of
analytically known initial data, e.g. for the Minkowski and Kruskal spacetimes,
where all constraints are solved on the whole Cartesian time evolution grid.
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3 Examples: Different Ways
to Compactify Minkowski Spacetime

The examples presented in this section help to illustrate the compactification
procedure – in particular its inherent gauge freedom. They yield interesting
numerical tests, some of which will be presented in Sect. 5.

3.1 Almost Static Compactification of Minkowski Spacetime

From the perspective of hyperboloidal initial data, the simplest way to compact-
ify Minkowski spacetime is to choose the initial conformal three-metric as the
flat metric, hab = δab, to set kab = hab, which solves the momentum constraint
(20) and to choose the conformal curvature scalar Rg3 as spherically symmet-
ric, Rg = Rg(x2 + y2 + z2). We know from [29] that a unique solution to the
constraints exists. It is not hard to see that it has to be spherically symmetric.
Furthermore, it is topologically trivial. From Birkhoff’s theorem we can thus
conclude that we are dealing with Minkowski spacetime. Choosing the simplest
gauge q = 0, Na = 0, Rg = 0, the resulting unphysical spacetime is actually
Minkowski spacetime in standard coordinates:

ds2 = −dt+ dΣ2 = Ω2(− dT 2 + dR2 +R2 (dθ2 + sin2 θdφ2) ) ,
where dΣ2 is the standard metric on R

3, dΣ2 = dr2 + r2
(
dθ2 + sin2 θdφ2

)
, and

the conformal factor is

Ω =
(
R2 − T 2)−1

=
(
r2 − t2

)
, (22)

where
r =

R

R2 − T 2 , t =
T

R2 − T 2 .

This setup has been chosen as the basis of Hübner’s numerical study of weak
data evolutions [13]. With the initial cut of I + chosen at x2 + y2 + z2 = 1, i+

is located at coordinate time t = 1, the generators of I + being straight lines at
an angle of 45◦.

This conformal representation of Minkowski spacetime is an “almost static”
gauge – since the spatial geometry is time-independent, so are all evolution vari-
ables except for the conformal factor Ω. The physical region inside of I + con-
tracts to the regular point i+ within finite time. This feature is shared with the
standard “textbook” example of conformally compactifying Minkowski space-
time, which takes the form of a map into part of the Einstein static universe
with Rg = 6,

ds2 = −dt2 + dΣ2 = Ω2 (−dT 2 + dR2 +R2 (dθ2 + sin2 θdφ2)) , (23)
3 We change notation from R to Rg for this section to avoid confusion with a coordinate

R we will introduce below.
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where dΣ2 is the standard metric on S3, dΣ2 = d�2 + sin2 �
(
dθ2 + sin2 θdφ2

)
,

and the conformal factor is

Ω2 = 4 (1 + (T −R)2)−1 (1 + (T +R)2)−1 = 4 cos2
t− �

2
cos2

t+ �
2

.

Here the coordinate transformations are

� = arctan(T +R)− arctan(T −R) , (24)
t = arctan(T +R) + arctan(T −R) . (25)

In these coordinates Minkowski spacetime corresponds to the coordinate ranges

−π < t+ � < π , (26)
−π < t− � < π , (27)

� ≥ 0 . (28)

For details and pictures of this mapping see the discussions by [4], [15] or [16].
Alternatively, we can choose stereographic spatial coordinates such that

dΣ2 = ω2 (dr2 + r2
(
dθ2 + sin2 θdφ2)) , ω =

2
(1 + r2)

.

or we may absorb the spatial conformal factor into the spacetime conformal
factor by rescaling to

ds′2 = −ω−2dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2) , (29)

which yields the lapse to be N = 1 (q = −3 logω), respectively N = ω−2

(q = −2 logω). Note that in the numerical code we use Cartesian coordinates
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

The conformal transformation leading to (29) changes the scalar curvature
from Rg = 6 to Rg = −12 (1 + r2)−2. We will see below in Sect. 5 that these
simple variations in gauge source functions and conformal rescaling lead to nu-
merical representations which are quite different, e.g. with regard to accuracy
and robustness.

3.2 A Static Hyperboloidal Gauge for Minkowski Spacetime

By translating a standard hyperboloid in Minkowski spacetime along the tra-
jectories of the ∂/∂t Killing vector, one can obtain a gauge where not only the
conformal spacetime is static, but also the conformal factor is time-independent
– thus also the physical geometry and all evolution variables of the conformal
field equations can be made time independent (this has been pointed out to me
by M. Weaver and I essentially follow her notes below). See also a talk given by
V. Moncrief [31], which we have become aware of after starting to work with
this gauge.
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In this gauge the point i+ is not brought into a finite distance and remains in
the infinite future. This conformal gauge is particularly useful for stability tests.

To derive this static metric, we start with spherical coordinates (T,R, θ, φ)
on Minkowski space, where the metric is

ds̃2 = −dT 2 + dR2 +R2 (dθ2 + sin2 θdφ2) . (30)

A family of standard hyperboloids with time translation parameter t is given by

(T − t)2 −R2 = 1 .

We transform now to new coordinates (t, �, θ, φ), where the level surfaces of t
are the standard hyperboloids and �(R) is chosen as a new radial parameter on
the hyperboloids. Setting T = t + cosh � and R = sinh �, the physical metric
becomes

ds̃2 = −dt2 − 2 sinh � d�dt+ d�2 + sinh2 �
(
dθ2 + sin2 θdφ2) . (31)

For simplicity we choose the conformal three-metric to be flat and introduce new
spherical coordinates (r, θ, φ) such that

ds2|t=const. = dr2 + r2
(
dθ2 + sin2 θdφ2) . (32)

Since hab = Ω2h̃ab we get Ω = dr/d� and∫ ∞

�

d�′

sinh �
=
∫ 1

r

dr′

r′
. (33)

The limits of integration are given by the fact that lim�→∞ r = 1. Performing
the integrals one finds that

r =
e� − 1
e� + 1

=
1
R

(
√

1 +R2 − 1) (34)

and

Ω =
1− r2

2
, (35)

our choice thus maps I + to the timelike cylinder r = 1.
The computer time coordinate t is a Bondi time coordinate on I . In coor-

dinates (t, r, θ, φ), the conformal metric reads

ds2 = −Ω2dt2 − 2 r dr dt+ dr2 + r2
(
dθ2 + sin2 θdφ2) , (36)

or
ds2 = −Ω2dt2 − 2 dt (xdx+ y dy + z dz) + dx2 + dy2 + dz2 (37)

in Cartesian coordinates, x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, which
are used in the numerical code. The shift vector is thus given by N i = −xi and
the lapse can be computed from −N2 + habNaN b = gtt (as implied by (19)) as
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N = (1 + r2)/2. The three metric has unit determinant, so q = lnN . Note that
the shift vector does not become “superluminal” beyond I +, because the lapse
is growing faster than the shift; gtt is nonnegative everywhere and zero only at
I +. The conformal Ricci scalar is

Rg = 12
(1− r2)(3 + r2)

(1 + r2)3
, (38)

which vanishes at I +.
For a numerical calculation one needs the minimal initial data set,

(hab, Ω, kab, Ω0) (39)

and the gauge source functions, (R,N,Na). In a numerical calculation in which
the Yamabe equation is solved to find Ω, one gives (hab, Ω̄, tr k). In a test case
such as this, which is an explicitly known solution, one can just take Ω̄ = Ω. It
remains therefore to calculate kab and Ω0. From

kab =
1

2N
(∂thab − LNhab) (40)

we find that the components of the extrinsic curvature are kij = δij/N and
k = 3/N . From the identity k̃ = Ω k − 3Ω0 we find that

Ω0 = − 2r2

1 + r2
. (41)

4 History

This section tries to give a broad overview of what has been achieved so far in the
field of numerical treatment of the conformal field equations. Historically, this
field was started by Peter Hübner by studying a scalar field coupled to gravity in
spherical symmetry in his PhD thesis [32] finished in 1993. His subsequent work
has lead to the development of both a 2D and a 3D evolution code, formulated
in “metric” variables. Jörg Frauendiener has also developed an independent 2D
code, formulated in frame variables.

4.1 Early Work on Spherical Symmetry

The first numerical implementation of the conformal field equations is due to Pe-
ter Hübner, who has studied the spherically symmetric collapse of scalar fields in
his PhD thesis [32] and subsequently in [33]. In his gauge both future null infinity
(I +) and future timelike infinity (i+) are compactified and the whole spacetime
is covered in finite coordinate time. Hübner studies the global structure of the
spacetime, including the appearance of singularities and the localization of the
event horizon. To handle the latter, floating point exceptions are caught and grid
points are flagged as “singular”, grid points whose values depend on information
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from singular grid points are correspondingly flagged as singular as well. Even
though this method does not allow to actually trace the singularity in a strict
sense (computers cannot actually deal with infinite values), the method traces
the singularity as tightly as possible. In contrast to typical black hole excision
schemes, which are based on locating the apparent horizon, this scheme could
thus be termed “tight excision”. The method has not yet been implemented in
higher dimensions, where one has to face more intricate technical problems and
where the structure of the singularity is likely to be much more complex as well.
The paper also studies critical collapse. Hübner’s results are consistent with the
black hole mass power-law scaling with the correct exponent, however no echoing
related to discrete self-similarity has been seen in his results. This has created
some discussion, whether the results of other authors are numerical artefacts,
or artefacts of boundary conditions at finite distance. However numerical criti-
cal collapse simulations in a compactified characteristic framework have recently
shown both the correct power-law scaling and discretely self-similar echoing [34].

The coordinates in this approach are based on the geometric structure of
double null-coordinates that is available in spherical symmetry. Unfortunately
this choice does not generalize in the absence of spherical symmetry. Finding
a gauge that would allow to run, say, the Kruskal spacetime in a 3D code for
“arbitrarily long” Bondi times is an open problem, where significant insight
could be gained from studying more general gauges in a manifestly spherically
symmetric code.

4.2 Axially Symmetric Spacetimes with Toroidal I
in the Frame Formulation

Following Hübner’s encouraging results for spherically symmetric simulations
[32,33], numerical codes have been developed by Frauendiener and Hübner to
study axially symmetric spacetimes. For simplicity, e.g. to avoid numerical sta-
bility problems at the axis of symmetry and to avoid problems associated with a
I of spherical topology – which does not align with Cartesian coordinates – both
Hübner and Frauendiener considered the asymptotically A3-spacetimes [35,36],
which do not possess an axis of symmetry and where I has toroidal topology.
These spacetimes are modelled after the A3-metric in the Ehlers-Kundt classi-
fication [37], which provides an analogue of the Schwarzschild metric in plane
symmetry. These spacetimes are not physical, but they contain a large class
of nontrivial radiative vacuum spacetimes, which make them an interesting toy
model to study numerical techniques, gauges and the extraction of radiation.4

These axisymmetric codes thus have been designed to treat the vacuum case, and
matter couplings have not yet been implemented. An advantage for code-testing
is that exact solutions are known [35,38].

In the first [27] of a series of papers [24,26,27,30] on his axisymmetric code,
Frauendiener gives a nice overview of the motivation for using the conformal
4 One of the notable differences with the Minkowski case is that one can only define a

Bondi-mass but no Bondi four-momentum.
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field equations of numerical simulations of isolated systems. He discusses the
conformal field equations in the space spinor formalism [39], which is chosen
because of compactness of notation, and because it allows a very straightfor-
ward 3+1 decomposition of the equations, rendering the equations in symmetric
hyperbolic form. His formalism contains 8 free functions which determine the
gauge: the harmonicity F := ∇c∇ct determines the choice of time coordinate t,
the shift is given in terms of frame coefficients, the scalar curvature R (Λ in his
notation) of the compactified spacetime and an imaginary and symmetric space
spinor field FAB (i.e. three numbers), which determines rotations of the spatial
frame (for FAB = 0 the frame is transported via Fermi-Walker transport). He
also discusses the implications of the assumptions of the toroidal symmetry, in
particular for the choice of gauge – e.g. the adoption of the frame.

In the second paper [26] of the series, Frauendiener discusses his numerical
methods and gauge choices and presents results for evolutions of initial data cor-
responding to the exact solution presented in [35]. Here one of the two Killing
vectors is disguised by a coordinate transformation. The numerical evolution
proceeds via a generalization of the Lax-Wendroff scheme to 2D, which Frauen-
diener proves to be stable and second order accurate. The time step is such that
the numerical domain of dependence is contained in the domain of dependence
as defined by the equations. An essential difficulty – as usual – is posed by the
treatment of the boundary. Well-posedness of the associated initial-boundary-
value problem has not yet been proven and numerical analysis can only provide
rough guidelines to work out stable algorithms [40]. Frauendiener’s boundary
treatment is based on the identification of ingoing and outgoing modes at the
boundary, as determined from the symmetric hyperbolic character of the equa-
tions. He sets boundary values for inward-propagating quantities (e.g. motivated
by the exact solution) and sets values for the outward propagating quantities by
extrapolation from the interior. This method can be applied just a few grid-points
outside of I and is found to be stable as long as the gauge source functions do
not depend on the evolution variables – which would change the characteristics.
Note that the constraints will in general not be satisfied on the boundary, which
may trigger constraint-violating modes of the equations.

Frauendiener gives a detailed discussion of the problems associated with the
choice of the gauge and performs a number of numerical experiments in this
respect, evolving data corresponding to exact solutions [35,38] with singular i+.
One of the problems is that if the gauge source functions are allowed to depend on
the evolution variables, this will change the characteristics of the system and will
in general spoil the symmetric hyperbolic character of the system. Experiments
in this direction, where F = F (N,K), indeed exhibited a boundary instability.
Regarding the choice of time coordinate, that is, the harmonicity function F ,
several choices are tested: a “natural” gauge, which is taken from the exact
solution, the Gauss gauge (where the lapseN is spatially constant), the harmonic
gauge, F = 0 and a family of gauges that interpolates between the “natural”
and harmonic gauge.
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The “natural” gauge is found to provide the best performance and the ap-
proach to the singularity is found to be essentially limited by machine precision.
The harmonic gauge leads to a coordinate singularity before reaching the sin-
gularity. This feature is shared by most of the gauges that interpolate between
natural and harmonic gauge. For the “Gauss” gauge with N = const., caustics
(coordinate shocks) develop quickly and crash the simulations.

Regarding the choice of shift vector, a prescription for I fixing – that is,
steering the evolution of the surface Ω = 0 – is discussed, which can be easily
implemented in Frauendiener’s formulation. This however relies on the specific
form of the frame equations and does not carry over to equations as those used in
Hübner’s codes [10]. In particular he studies the case of “I freezing” – holding
the coordinate position of I in place such that no loss of resolution occurs in
the physical domain.

Finally, he discusses the extraction of gravitational radiation, e.g. by com-
puting the Bondi mass and shows some results.

In order to study more general spacetimes, Frauendiener has implemented
a numerical scheme for determining hyperboloidal initial data sets for the con-
formal field equations by using pseudo-spectral methods as described in [30].
He uses the implicit approach of first solving the Yamabe equation and then
carrying out the division by the conformal factor for certain fields which vanish
on I . The challenge there is to numerically obtain a smooth quotient. The di-
vision problem is treated by a transformation to the coefficient space, where a
QR-factorization of a suitable matrix is used and then transforming back.

In [24] Frauendiener gives a pedagogical discussion of the issue of radiation
extraction in asymptotically flat space-times within the framework of conformal
methods for numerical relativity. The aim is to show that there exists a well de-
fined and accurate extraction procedure which mimics the physical measurement
process and operates entirely intrinsically within I +. The notion of a detector
at infinity is defined by idealizing local observers in Minkowski space. A detailed
discussion is presented for Maxwell fields and the generalization to linearized
and full gravity is performed by way of the similar structure of the asymptotic
fields.

Recently, Hein has written a 2D axisymmetric code that allows for an axis
[41], i.e. can treat the physical situation with a I + of spherical topology. The
usual problem of the coordinate singularity at the axis in adapted coordinates is
solved by using Cartesian coordinates, following a method developed by Alcu-
bierre et al. [42]. The code has so far been tested by evolving Minkowski space-
time in various gauges, further tests with nontrivial spacetimes are currently
underway.

4.3 Metric-Based 2D and 3D Codes

The basic design of Hübner’s approach is outlined in [10], where he presents the
first order time evolution equations as obtained from a 3+1 split of the con-
formal field equations. The evolution equations can be brought into symmetric
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hyperbolic form by a change of variables. He discusses his motivation of avoid-
ing artificial boundaries and how the conformal field equations formally allow
placement of the grid boundaries outside the physical spacetime.

A particularly subtle part of the evolution is usually the boundary treatment.
In the conformal approach we are in the situation that the boundary can actually
be placed outside of the physical region of the grid – this is one of its essential
advantages! In typical explicit time evolution algorithms, such as our Runge-
Kutta method of lines, the numerical propagation speed is larger than the speed
of all the characteristics (in our case the speed of light). Thus I does not shield
the physical region from the influence of the boundary – but this influence has
to converge to zero with the convergence order of the algorithm – fourth order in
our case. In principle one therefore does not have to choose a “physical” bound-
ary condition. The only requirements are stability and “practicality” – e.g. the
boundary condition should avoid, if possible, the development of large gradients
in the unphysical region to reduce the numerical “spill over” into the physical
region, or even code crashes. It seems likely however, that this practicality re-
quirement will eventually lead to a treatment of the boundary which satisfies
the constraints at the boundary.

Hübner develops the idea of modifying the equations near the grid boundaries
to obtain a consistent and stable discretization. The current implementation of
the boundary treatment relies on this introduction of a “transition layer” in the
unphysical region, which is used to transform the rescaled Einstein equations
to trivial evolution equations, which are stable with a trivial copy operation at
outermost gridpoint as a boundary condition (see [10] for details and references).
He thus replaces

∂tf +Ai∂if − b = 0

by
∂tf + α(Ω)

(
Ai∂if − b

)
= 0 ,

where α is chosen as α(Ω) = 0 for Ω ≤ Ω0 < Ω1 < 0 and 1 for Ω ≥ Ω1.
One potential problem is that the region of large constraint violations outside
of I may trigger constraint violating modes of the equations that can grow
exponentially. Another problem is that a “thin” transition zone causes large
gradients in the coefficients of the equations – thus eventually leading to large
gradients in the solution, while a “thick” transition zone means loosing many
gridpoints. If no transition zone is used at all and the Cartesian grid boundary
touches I , the ratio of the number of grid points in the physical region versus
the number of grid points in the physical region is already π/6 ≈ 0.52.

Furthermore he discusses his point of view concerning possible advantages
of the conformal approach and discusses potential problems of the Cauchy and
Cauchy-Characteristic matching approaches to numerical relativity. He outlines
the geometric scenario of his approach and stresses that these techniques allow,
in principle, to calculate the complete future of scenarios such as initial data for
N black holes.

The second paper [11] of the series deals with the technical details of con-
struction of initial data and of time-evolution of such data. The second and
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fourth order discretizations, which are used for the construction of the complete
data set and for the numerical integration of the time evolution equations, are
described and their efficiencies compared. Results from tests for A3 and disguised
Minkowski spacetimes confirm convergence for the 2D and 3D codes.

The simplest approach to the division byΩ would be implementing l’Hôpital’s
rule. However this leads to non-smooth errors and consequently to a loss of
convergence [11]. Instead, Hübner [11] has developed a technique to replace a
division g = f/Ω by solving an elliptic equation of the type

∇a∇a(Ω2g −Ωf) = 0

for g (actually some additional terms added for technical reasons are omitted
here for simplicity). For the boundary values Ω2g−Ωf = 0, the unique solution
is g = f/Ω. The resulting linear elliptic equations for g are solved by the same
numerical techniques as the Yamabe equation. For technical details see Hübner
[12].

Finally, we have to extend the initial data to the full Cartesian spatial grid
in some way. Since solving all constraints also outside of I will in general not be
possible in a sufficiently smooth way [11], we have to find an ad hoc extension,
which violates the constraints outside of I but is sufficiently well behaved to
serve as initial data. The resulting constraint violation is not necessarily harmful
for the evolution, since I causally disconnects the physical region from the
region of constraint violation. On the numerical level, errors from the constraint
violating region will in general propagate into the physical region, but if our
scheme is consistent, these errors have to converge to zero with the convergence
order of the numerical scheme (fourth order in our case). There may of course
still be practical problems that prevent us from reaching this aim: making the
ad-hoc extension well behaved is actually quite difficult, the initial constraint
violation may trigger constraint violating modes in the equations, which take
us away from the true solution, singularities may form in the unphysical region,
etc.

Since the time evolution grid is Cartesian, its grid points will in general
not coincide with the collocation points of the pseudo-spectral grid. Thus fast
Fourier transformations cannot be used for transformation to the time evolution
grid. The current implementation instead uses standard discrete (“slow”) Fourier
transformations, which typically take up the major part of the computational
effort of producing initial data.

It turns out that the combined procedure works reasonably well for certain
data sets. For other data sets the division by Ω is not yet solved in a satisfac-
tory way and constraint violations are of order unity for the highest available
resolutions. In particular this concerns the constraint ∇bEa

b = −(3)εabck
bdBd

c

((14d) in [10]), since Eab is computed last in the hierarchy of variables and re-
quires two divisions by Ω. Further research is required to analyze the problems
and either improve the current implementation or apply alternative algorithms.
Ultimately, it seems desirable to change the algorithm for obtaining initial data
to a method that solves the conformal constraints directly and therefore does
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not suffer the current problems. This approach may of course introduce new
problems like having an elliptic system too large to be handled in practice.

The time evolution algorithm is an implementation of a standard fourth order
method of lines (see e.g. [43]). In the method of lines we formally write

∂tf = B(f, ∂if) , (42)

where B(f, ∂if) = −Ai(f)∂if + b(f). Discretizing the spatial derivatives
parametrizes the ordinary differential equations by grid point index. For the
present code, fourth order accurate centered spatial differences have been imple-
mented, e.g. for the x-derivative:

∂xf →
1

12Δx
(−fi+2,j,k + 8fi+1,j,k − 8fi−1,j,k + fi−1,j,k) .

The numerical integration of the ordinary differential equations proceeds via
the standard fourth order Runge-Kutta scheme:

f l+1
i,j,k = f li,j,k +

1
6

(
kli,j,k + 2kl+1/4

i,j,k + 2kl+1/2
i,j,k + kl+3/4

i,j,k

)
, (43)

where

kli,j,k = Δt B(f li,j,k, ∂if
l
i,j,k) ,

k
l+1/4
i,j,k = Δt B(f l+1/4

i,j,k , ∂if
l+1/4
i,j,k ) , f

l+1/4
i,j,k = f li,j,k +

1
2
kli,j,k ,

k
l+1/2
i,j,k = Δt B(f l+1/2

i,j,k , ∂if
l+1/2
i,j,k ) , f

l+1/2
i,j,k = f li,j,k +

1
2
k
l+1/4
i,j,k ,

k
l+3/4
i,j,k = Δt B(f l+3/4

i,j,k , ∂if
l+3/4
i,j,k ) , f

l+3/4
i,j,k = f li,j,k + kl+1/2

i,j,k .

Additionally, a dissipation term of the type discussed in theorems 6.7.1 and
6.7.2 of Gustafsson, Kreiss and Oliger [43] is added to the right-hand-sides to
damp out high frequency oscillations and keep the code numerically stable. The
dissipation term used is

σQ2 :=
σ

64N
(Δx)5

N∑
i=1

∂i
6f ,

where the spatial derivatives are discretized as

∂x
6f li,j,k →

1
(Δx)6

(
f li−3,j,k − 6f li−2,j,k + 15f li−1,j,k

− 20f li,j,k + 15f li+1,j,k − 6f li+2,j,k + f li+3,j,k
)
.

Numerical experiments show that usually small amounts of dissipation (σ of
the order of unity or smaller) are sufficient and do not change the results in
any significant manner. Numerical tests for Minkowski spacetime with disguised
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symmetries and an explicitly known A3-like solution with radiation [38] are
described in [11].

Further extensive tests of the 2D code have been performed by Weaver [44].
She studied the choice of gauge source functions for an A3-like solution, solving
the Yamabe equation for the conformal factor. She found that for this solution
it is quite simple to prescribe a shift so that I is fixed to a very good approx-
imation. She also studied the use of the gauge source function q to prolong the
numerical simulation inside physical spacetime. In cases where q = 0 results in
a “singularity” developing outside physical spacetime (which causes the code to
crash), prescription of q so that the evolution inside physical spacetime is pro-
longed compared to the outside allows the simulation to essentially cover the
physical spacetime to the future of the initial data surface. She thus found that
in this context the ad hoc prescription of gauge source functions was sufficient
to achieve desired effects, and caused no instabilities. Also she explored the ef-
fect of turning off the transition zone, while still simply copying data at the
outer grid boundary into the ghost zone, along with prescription of q, so that
the evolution is slowed down at the outer boundary. In the A3-like 2D runs this
alternative boundary treatment was successful and avoided problems created by
the transition zone.

In the third part of the series [12], a pseudospectral solver for the constraints
is described. Since the implementation depends on the topology, it discusses
both the asymptotically A3 and asymptotically Minkowski cases. At the end
also some remarks are made about a possible extension to the multi-blackhole
case, using a multi-patch scheme (the Schwarz alternating procedure).

In the fourth part of the series [13] Hübner presents results of 3D calculations
for initial data which evolve into a regular point i+ and which thus could be called
“weak data”. The initial conformal metric is chosen in Cartesian coordinates as

ds2 =
(

1 +
A

3
Ω̄2 (x2 + 2y2

))
dx2 + dy2 + dz2 . (44)

We choose Ω̄ =
(
1−
(
x2 + y2 + z2

))
/2 as the boundary defining function Ω̄

appearing in this ansatz. It is used to satisfy the smoothness condition for the
conformal metric at I . For the gauge source functions, Hübner has made the
“trivial” choice: R = 0,Na = 0, q = 0, i.e. the conformal spacetime has vanishing
scalar curvature, the shift vanishes and the lapse is given by N = eq

√
deth =√

deth. This simplest choice of gauge is completely sufficient for A = 1 data and
has lead to a milestone result of the conformal approach – the evolution of weak
data which evolve into a regular point i+ of M, which is resolved as a single grid
cell. With this result Hübner has illustrated a theorem by Friedrich, who has
shown that for sufficiently weak initial data there exists a regular point i+ of M
[45]. The complete future of (the physical part of) the initial slice can thus be
reconstructed in a finite number of computational time steps. This calculation is
an example of a situation for which the usage of the conformal field equations is
ideally suited: main difficulties of the problem are directly addressed and solved
by using the conformal field equations.
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A natural next question to ask is: what happens if one increases the amplitude
A? To answer this question, I have performed and analyzed runs for integer
values of A up to A = 20. Preliminary results have been presented in [46]. While
for A = 1, 2 the code was found to be able to continue beyond i+ without
problems, for all higher amplitudes the “trivial” gauge leads to code crashes
before reaching i+. While the physical data still decay quickly in time, a sharp
peak of the lapse develops outside of I and crashes the code after Bondi time
∼ 8 (320 M) for A = 3 and ∼ 1.5 (3 M) for A = 20 (here M is the initial
Bondi mass). A partial cure of the problem was obtained using a modified gauge
source function q = −r2/a (N = e−r2/a√deth), where a is tuned such that one
gets a smooth lapse and smooth metric components. For A = 5, for example, a
value of a = 1 was found by moderate tuning of a (significantly decreasing or
increasing a crashes the code before the regular i+ is reached). Unfortunately,
this modification of the lapse is not sufficient to achieve much higher amplitudes.
As A is increased, the parameter a requires more fine tuning, which was only
achieved for A ≤ 8. For higher amplitudes the code crashes with significant
differences in the maximal and minimal Bondi time achieved, while the radiation
still decays very rapidly. Furthermore, the curvature quantities do not show
excessive growth – it is thus natural to assume that we are still in the weak-
field regime and the crash is not connected to the formation of an apparent
horizon or singularity. While some improvement is obviously possible through
simple non-trivial models for the lapse (or other gauge source functions), this
approach seems quite limited and more understanding will be necessary to find
practicable gauges. An interesting line of research would be to follow the lines
of [47] in order to find evolution equations for the gauge source functions which
avoid the development of pathologies.

Schmidt has presented hyperboloidal initial data for the Kruskal spacetime,
a hyperboloidal foliation for the future of these hyperboloidal initial data [48]
and results from numerical simulations evolving these initial data with differ-
ent gauges, which have been performed by Weaver with Hübner’s 3D code. The
explicit hyperboloidal version of the Kruskal spacetime is very useful for numer-
ically testing the conformal approach in the treatment of black hole spacetimes.
These runs have been performed in octant mode. The runs typically proceed
until the determinant of the three metric becomes negative [44], caused by some
feature in the exact solution which is no longer adequately resolved and which is
growing, leading to large narrow spikes in the numerical data. Future work will
have to be directed toward improving the choice of gauge source functions such
that rapidly growing sharp features are avoided.

In the next section, I will present new results obtained with the 3D code for
asymptotically Minkowski spacetimes, which will illustrate some of the current
problems. One of these is the presence of exponentially growing constraint vio-
lating modes. The problem of controlling the growth of the constraints for the
conformal field equations has first been addressed by Florian Siebel in a diploma
thesis [49] and subsequently by Hübner and Siebel in [50]. The key idea in this
work is to develop a λ–system [51] for the conformal field equations in 1+1
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dimensions (with toroidal I ’s). A λ–system is an enlarged evolution system,
where evolution equations for the constraints are added in, consistently with
symmetric hyperbolicity. One then has a large parameter space of coefficient
functions available in which to find choices such that the new system has the
constraint surface as an attractor. The main conclusion of this work is that it was
not possible to significantly improve the fidelity of the numerical calculations.
In those cases where moderate improvements regarding the constraints could be
achieved, the deviation from the known exact solution would get larger.

5 Results from 3D Calculations

All the results presented in this section have been performed with 1213 grids on
32 processors of the AEI’s SGI origin 2000. The outer boundary has been placed
at a radius of r = 1.15 in these runs (I + is initially located at a radius r = 1).

5.1 Minkowski Data

We will first discuss some results for Minkowski spacetime, which in spite of its
simplicity provides some nontrivial numerical tests. As has been first demon-
strated by Hübner in [13], for weak data – in particular Minkowski space – it is
possible via the conformal approach to cover the whole domain of dependence
of initial data reaching out to I + with a finite number of time steps. Let us
thus first consider the gauges of Sect. 3.1, where the compactified geometry is
time-independent, but a time-dependent conformal factor Ω is responsible for
contracting the cuts of I + to a point within finite coordinate time.

We have compared the gauges where the conformal spacetime is Minkowski,
(22), the Einstein static universe (23), or the spacetime given by (29). Essentially,
the result is that the Minkowski case yields the highest accuracy, the Einstein
universe case works in principle and in the case (29) the code crashes before
reaching i+. In Fig. 1 the Minkowski and Einstein universe cases are compared
by plotting hxx − 1 and the value of the constraint ∇xΩ = Ωx at the center
versus coordinate time (where t is scaled such that t(i+) = 1. The Minkowski
case – denoted by the unbroken line – clearly yields better accuracy, although
the growth of hxx − 1 is faster and approximately exponential during the later
stage of “physical” evolution. Note that the constraint grows very fast in both
cases.

Figures 2 – 5 show a comparison of the less optimal Einstein universe case
with the case (29) to illustrate some of the problems one expects in the evolution
of nontrivial spacetimes. Figure 2 shows the time evolution of hxx along the
positive x–axis versus coordinate time for the Einstein universe case and for
the case of (29). Figure 2 compares the corresponding contour lines. While no
deviation from staticity is visible for the Einstein universe case, the other case
shows a rapidly growing peak in hxx and the lapse (shown in Fig. 4) (and thus
of deth), which is located in the transition zone outside of I +. Eventually
this feature cannot be resolved any more and the code crashes. In the Einstein
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Fig. 1. Comparing the Minkowski (solid line) and Einstein universe (dashed line) cases:
left, the value of the constraint ∇xΩ = Ωx at the center is plotted versus coordinate
time. In the right image hxx − 1 is plotted vs. coordinate time (where t is scaled such
that t(i+) = 1)

Fig. 2. The value of the metric component hxx for x ≥ 0 is plotted versus coordinate
time. The left image shows the Einstein universe case. The right image shows case (29).
There the maximum of hxx in the region where Ω > 0 is approximately at the value 5

static case the code was simply stopped by running out of time in the queue.
Fig. 5 shows the sum over the L2–norms (taken in the physical region) of all the
constraints versus time. While in the Einstein static case the constraints show
a rapid decrease in the physical region, followed by a steep growth after passing
through i+, the case (29) exhibits roughly exponential overall growth almost
from the start.

Results for the completely static gauge given by (37) are shown in Figs. 6 – 9.
This gauge poses a harder challenge than the previous ones, where i+ is reached
in finite time. Now the goal is to maintain an indefinite stable evolution. However,
the evolution shows exponential growth, illustrated in Figs. 8 and 9 by the values
of hxx and constraints ∇xhxx and ∇xΩ = Ωx. It is interesting, however, that
the curvature invariants I and J are decreasing during the evolution as shown
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Fig. 3. Contour lines of the metric component hxx for x ≥ 0 are plotted versus coor-
dinate time. The left image shows the Einstein universe case. The right image shows
case (29). The thicker line marks Ω = 0, i.e. I +

Fig. 4. The value of the lapse N for x ≥ 0 is plotted for the case (29) versus coordinate
time. The left image shows the points where Ω > 0. The right image shows all points

Fig. 5. The sum over the L2–norms (taken in the physical region) of all the constraints
is plotted versus coordinate time for the Einstein universe (left) and case (29) (right)
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in Figs. 6 and 7. The exponential blowup crashes the code at t ∼ 5.1. This
time seems to be roughly independent of resolution, size of time step, amount
of dissipation, location of the boundary and location of the transition zone. A
possible explanation is exponentially growing constraint violating modes on the
continuum level.

Fig. 6. The real parts of the curvature invariants I (left) and J (right) for x ≥ 0 are
plotted versus coordinate time for the static gauge of (37). Superimposed are contour
lines of the conformal factor Ω

Fig. 7. The real parts of the curvature invariants I (left) and J (right) are plotted
versus coordinate time for the static gauge of (37). The solid line is for the gridpoint
at the center of the grid, the dashed line for a grid point at x = 0.996, y = z = 0,
multiplied by a factor of 10−5 for I and 10−8 for J

5.2 “Brill” Data

We use an axisymmetric Brill–wave type ansatz to look at initial data that
contain radiation and set

ds2 = ω2 (e2Q(d�2 + dz2) + �2dϕ2) , (45)
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Fig. 8. The value of the metric component hxx for x ≥ 0 is plotted versus coordinate
time with linear (left) and logarithmic (right) scaling for the static gauge of (37).
Approximately exponential growth is obvious. The largest amplitude of the growth is
in the center

Fig. 9. The values of hxx (solid line) and the constraints ∇xhxx (dot–dashed) and
∇xΩ = Ωx (dashed) are plotted versus coordinate time for the static gauge of (37)

where �2 = x2 + y2. With Q = ln(1 +AΩ̄2�2f(�2))/2, in Cartesian coordinates
the conformal three-metric becomes

hB = ω2

⎛⎝1 +Ax2 Ω̄2 f Axy Ω̄2 f 0
Axy Ω̄2 f Ay2 Ω̄2 f 0

0 0 1 +AΩ̄2 f

⎞⎠ .

The axial symmetry makes it easier to analyze the data and choose the gauges.
Here we set ω = f = 1 and A = 1.
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Figure 10 shows the real part of the physical curvature invariant Ĩ = Ω6 I and
the mass loss ṀB. The curvature invariant Ĩ is computed both as a perturbation
of the Einstein universe and case (29) (triangles) for a “Brill wave” with A = 1,
to demonstrate that the physical initial data are indeed identical. The mass loss
ṀB is computed as a perturbation of the Einstein static case (Rg = 6) and
plotted in a logarithmic scale. Note that the falloff levels off at late times to a
constant value due to numerical error. Note also that oscillations, as we show
here, are absent from the initial data corresponding to (44) as shown in Fig. 5
of [46].

Fig. 10. The left image shows the real part of the physical curvature invariant Ĩ = Ω6 I,
computed as a perturbation of the Einstein universe (line) and case (29) (triangles) for
a “Brill wave” with A = 1. The right image shows the corresponding mass loss function
ṀB, computed as as a perturbation of the Einstein static case (Rg = 6)

6 Conclusions and Outlook

Bringing the conformal approach to numerical relativity to full fruition such
that it can be used as a tool to explore new physics – in particular in black hole
spacetimes – will be a long term effort. In order to contemplate the scope of this
project, let us give a drastically oversimplified definition of the art of numerical
relativity as a procedural recipe:

1. Find a well posed formulation of the initial(-boundary) value and initial data
(constraint) problems for general relativity (optimally, well-posedness should
be a theorem but good numerical evidence may be considered sufficient).

2. Without destroying well-posedness, modify your equations and choose your
gauges, such that your problem actually becomes well-conditioned5.

3. Construct a solid numerical implementation, flexible enough to handle ex-
periments as required by science and by finding solutions to the problems
associated with point two.

5 Ill conditioned problems are those where a result depends very strongly on input,
i.e. on initial data, see e.g. Sect. 1.6 and 6.1 of [52].
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4. Discover (new) results in physics.
5. Explain what you achieved (and how) to fellow numerical relativists and oth-

ers, such as mathematical relativists, astrophysicists, cosmologists, or mathe-
maticians.

Even without considering the last point (which the present article humbly tries
to serve), numerical relativity is a challenging enterprise.

The conformal approach complies with point one in the optimal sense: the
equations are regular in the whole spacetime, including the asymptotic region,
there are no ambiguities associated with ad-hoc cutoffs at finite distance and the
evolution equations are symmetric hyperbolic, which guarantees well-posedness
of the initial value problem and allows well-posed initial-value-boundary prob-
lems.

Point two, however, already poses a significant challenge: well-defined is not
well-conditioned, well-posed problems may still be hopelessly ill-conditioned for
numerical simulation. A simple example is provided by any chaotic dynamical
system (in the sense of ordinary differential equations). When it comes to solv-
ing the Einstein equations, the gauge freedom of the theory results in having
more equations (constraints and evolution equations) than variables and more
variables than physical degrees of freedom. This redundancy can easily lead to
spurious approximate solutions. Different ways to write the equations are only
equivalent with regard to exact solutions, but approximations will tend to exhibit
constraint violating or gauge modes that may grow very fast (e.g. exponentially).
This is perfectly consistent with well-posedness but not acceptable numerically.
Even without triggering instabilities, the choice of a bad gauge is likely to create
features in the solution which are in practice impossible to resolve. The “good
news” is that many of the problems encountered with the conformal field equa-
tions have counterparts in traditional approaches to numerical relativity. The
way toward solving these problems usually takes the form of gaining insight
from simplifications and analytical studies, which then have to be tested in full
numerical simulations. This requires a flexible code that is geared toward per-
forming the necessary experiments, which leads to point three – another hard
task for classical relativists, because it requires an engineering attitude many
relativists are not familiar with. The gauge freedom of general relativity and
absence of a natural background creates an additional twist when it comes to
point four, which leads to numerous technical and conceptual subtleties.

What is the roadmap for the future? In order to comply with points two
and three of the above recipe, preliminary work is carried out toward a new 3D
code that will be flexible enough to carry out a range of numerical experiments
in order to come up with well-conditioned algorithms for the conformal field
equations. One major issue in the improvement of algorithms is to implement a
better boundary condition which does not require a transition zone, allows the
boundary to be closer to I + and minimize constraint violations generated at the
boundary or outside I . Here an essential problem is that I + has spherical cuts
and algorithms based on Cartesian grids are probably not optimal. Certainly,
a lot of energy will have to be devoted to the question of finding appropriate
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gauge conditions. Particularly hard seems to be the question of how to choose
the Ricci scalar R of the unphysical spacetime. Since R steers the conformal
factor implicitly through nonlinear PDEs, it seems very hard to influence the
conformal factor in any desired way.

An important role in improving the analytical understanding and in set-
ting up numerical experiments will be played by the utilization of simplifica-
tions. Particularly important are spacetime symmetries and perturbative stud-
ies. Minkowski and Kruskal spacetimes provide particularly important cases to
be studied in this context. An alternative route to simplification, which has
been very successful in numerical relativity, is perturbative analysis, e.g. with
Minkowski or Schwarzschild backgrounds. In the context of compactification this
has been carried out numerically with characteristic codes in [53,54] (using ap-
propriate variables in the Teukolsky equations, the perturbation equations are
made regular at I +). Some of the problems that showed up there are likely to
be relevant also for the conformal approach.

The theory of general relativity is known as a never drying out source for
subtle questions in physics and mathematics. Numerical relativity is hoped to
help answer some important questions – but at the same time poses many new
ones. Without a thorough understanding of how to obtain approximate solutions,
our insight into the theory seems incomplete. For isolated systems, the mastering
of compactification techniques promises reliability and precision. The next years
are expected to see some significant progress in this direction.
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10. P. Hübner, Black Class. Quantum Grav. 16, 2145 (1999)
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Binary Black Holes and Gravitational Wave
Production: Post-Newtonian Analytic Treatment

Gerhard Schäfer
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Max-Wien-Platz 1, D-07743 Jena, Germany

Abstract. Within a post-Newtonian approximation scheme the Einstein field equa-
tions are solved for the dynamics of the decaying orbits of binary black holes and
the related gravitational wave emission. The black holes are modelled by two Dirac
delta functions in conformally related d-dimensional euclidean space. The limit from
the Einstein field equations in (d+1)-dimensional spacetime is applied to achieve well-
defined mathematical expressions in 4-dimensional spacetime. The conservative orbital
dynamics is presented up to the third post-Newtonian order of approximation and the
decaying orbital phase up to the four-and-a-half post-Newtonian order. The gravita-
tional waveform is given to second post-Newtonian order.

1 Introduction

In General Relativity (GR), the objects with the least (internal) degrees of free-
dom are black holes. Correspondingly, the simplest two-body problem is the
one containing two black holes. As simple as the problem seems to be, non-
stationarity because of gravitational wave emission makes the full-analytic solu-
tion of the problem unsolvably complicated. Even using most advanced super-
computer techniques in numerical relativity, the problem is still far from being
solved. It is thus of great importance to construct approximate analytic solu-
tions which allow the description of the motion of binary black holes with high
accuracy. Here the problem immediately arises that black holes are strongly self-
gravitating objects whereas their relative orbital dynamics can be as weak as one
likes, as weak as to fulfil the Newtonian dynamics very well. An approximation
scheme has therefore to be applied which at the same time covers as well the
weak-field motion as the strong-field self-energy regimes.

Knowing that the Brill-Lindquist binary black-hole initial value solution [1]
can be deduced from two Dirac delta sources living in conformally related eu-
clidean 3-space [2], we adopt that approach to model our binary black-hole sys-
tem. At the same time we generalize the 3-dimensional space to d-dimensional
space. In this way we formally obtain weakly self-gravitating black holes. This
procedure delivers a mathematically consistent framework regarding the distri-
butional calculus, at least as far as explicit calculations have shown [3]. Further-
more, in going over to (d+1)-dimensional spacetime, neither basic principles of
the theory like the principle of coordinate covariance are destroyed nor specific
symmetry properties like the isometry property of the analytically continuated
Schwarzschild 3-metric. In the limit where the dimension d approaches 3, we get
a well-defined binary black-hole structure in 4-dimensional physical spacetime.

L. Fernández-Jambrina, L.M. González-Romero (Eds.): LNP 617, pp. 195–209, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Besides the Brill-Lindquist initial value solution there exists the Misner-
Lindquist one [4], [5]. The latter solution is defined by the isometry property
of the analytically continuated 3-metric. The solution can be represented by two
sets of infinite many Dirac delta functions in conformally related flat space [2]. In
the electrostatics, the Brill-Lindquist and Misner-Lindquist solutions correspond
to the electric fields of two point-charges and two conducting charged spheres,
respectively. The imaging method introduces an infinite number of point-charges
in the virtual insides of both spheres. As seen from a technical point of view,
the binary black-hole configuration we are going to work out in this paper is the
simpler one. Finally we point out that the Brill-Lindquist and Misner-Lindquist
black holes are eternal black holes, the configurations of which are shown up in
the non-radiative parts of the Hamiltonians.

2 Binary Black-Hole Model

In this paper we will treat the Einstein field equations using the ADM (d+1)-
decomposition of spacetime in which spacetime is foliated into d-dimensional
spacelike hypersurfaces depending on time, t, parametrically [6], [7]. On the
hypersurfaces there are living the four constraint equations

g1/2R =
1
g1/2

(
πijπ

j
i −

1
d− 1

π2
)

+
16πG
c3

∑
a

(
m2
ac

2 + gijpaipaj
)1/2

δa (1)

and

−2∂jπ
j
i + πkl∂igkl =

16πG
c3

∑
a

paiδa , (2)

where gij denotes the (symmetric) metric of a d-dimensional hypersurface and
R its curvature scalar. g, gij , πijc3/16πG are, respectively, the determinant, the
inverse metric, and the canonical conjugate of the d-dimensional metric, whereby
the conjugate is a density of weight one; π = πii , where πij = gjkπik. The linear
momentum of point-mass a (a=1,2) is denoted by pai and its bare mass by ma.
c is the speed of light and G the Newtonian gravitational constant generalized
to d-dimensional space. ∂i = ∂/∂xi is the partial derivative with respect to the
hypersurface coordinates xi (i = 1, 2, ..., d). The Dirac delta function δa = δ(xi−
xia(t)) is defined by δ(xi − xia(t)) = 0 if xi �= xia(t) and

∫
ddx δ(xi − xia(t)) = 1,

where xia(t) is the space coordinate of point-mass a at time t.
The ADM coordinate conditions which generalize the isotropic Schwarzschild

metric to arbitrary (d+ 1)-dimensional spacetimes read, e.g. see [3],

gij =
(

1 +
d− 2

4(d− 1)
φ

)4/(d−2)

δij + hTT
ij (3)

and

πii = 0 , (4)
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where hTTij denotes the tranverse-traceless (TT) part of the metric gij with re-
spect to the euclidean d-metric δij . The latter metric is the conformal metric
mentioned in the introduction; it is directly related to the isotropic part of
the metric gij under the adapted coordinate conditions. Notice the interesting
property that for d = 2, gij = eφδij + hTT

ij holds, as well as g1/2R = −Δφ if
additionally hTT

ij = 0 is valid (see (17) below).
Taking into account the gauge condition for πij , the following decomposition

can be applied,

πij = π̃ij + πijTT , (5)

where

π̃ij = ∂iπj + ∂jπi −
2
d
δij∂kπ

k (6)

and where πijTTc
3/16πG denotes the canonical conjugate to hTT

ij .
The Hamilton functional of the binary black hole system is given by

H
[
xia, pai, h

TT
ij , π

ij
TT

]
= − c4

16πG

∫
ddx Δφ

[
xia, pai, h

TT
ij , π

ij
TT

]
, (7)

where Δ is the Laplacian in d-dimensional flat space. For the derivation of the
dynamics of the binary black-hole system it has turned out to be most advanta-
geous to introduce a Routh functional of the form [8],

R
[
xia, pai, h

TT
ij , ∂th

TT
ij

]
= H − c3

16πG

∫
ddx πijTT∂th

TT
ij . (8)

This functional is a Hamiltonian for the particle (point-mass) degrees of freedom,
and a Lagrangian for the independent gravitational field degrees of freedom. The
evolution equation for the latter reads

δ
∫
R(t′)dt′

δhTT
ij (xk, t)

= 0 , (9)

where the δ-symbol denotes the standard functional (Fréchet) derivative. The
solution of this equation will be constructed iteratively, through iterative inver-
tion of the d’Alembertian in (d+1)-dimensional flat spacetime with no-incoming
radiation condition applied at each step [see e.g. [9] for the retarded Green’s
function in (d+1)-dimensional spacetime]. Although the calculations are done in
a fictitious spacetime with fictitious past lightlike infinity, the propagation prop-
erty in the true metric may be realized at each step checking the physically to
be imposed no-incoming boundary condition with respect to true lightlike past
infinity, cf. (27) below.

The Hamilton equations of motion for the two black holes take the form

ṗai = − ∂R
∂xia

, ẋia =
∂R

∂pai
. (10)
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The conservative part Rc of the binary dynamics is given by

Rc(t) =
1
2
[Ron(t) +Ron(−t)] , (11)

where

Ron(t) = R
[
xia, pai, h

TT
ij [xka, pak], ∂th

TT
ij [xka, pak]

]
(12)

denotes the on-field-shell Routh functional. It is easily shown that∫
Rc(t)dt =

∫
Ron(t)dt

holds. Obviously, the non-time-symmetric part of an on-field-shell Routh func-
tional is a total time derivative which does not contribute to equations of motion
for matter. The conservative equations of motion read

ṗai(t) = −δ
∫
Rc(t′)dt′

δxia(t)
, ẋia(t) =

δ
∫
Rc(t′)dt′

δpai(t)
, (13)

where the functional derivatives read

δ
∫
Rc(t′)dt′

δz(t)
=
∂Rc

∂z(t)
− d

dt
∂Rc

∂ż(t)
+ . . . , (14)

with z = xia or z = pai.
By the aid of a higher order contact transformation new phase-space coor-

dinates x̄ia, p̄ai can be introduced in such a way that an ordinary Hamiltonian
Hco(x̄ia, p̄ai) results [10], also see [11]. This Hamiltonian can be obtained by
simply putting

Hco(x, p) = Rc[x, p, ẋ(x, p), ṗ(x, p), . . .] (15)

and by recognizing that a phase-space coordinate transformation has occurred
implicitly. There is no need to know the new phase-space coordinates in terms of
the former ones as long as coordinate (gauge) invariant quantities are considered
like in Sects. 4.1, 5.1, and 5.2 below.

The ordinary Hamilton equations read

˙̄pai = −∂Hco

∂x̄ia
, ˙̄xia =

∂Hco

∂p̄ai
. (16)

The Hamilton function of Sect. 4 below is of Hco-type.

2.1 Brill-Lindquist Initial Value Solution

To explicitly prove that the introduced source model produces binary black-hole
spacetimes we will derive the Brill-Lindquist initial value solution for uncharged
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black holes. Putting hTT
ij = 0 and pai = 0, and hereof πij = 0, the constraint

equation (1) takes the simple form

−
(

1 +
d− 2

4(d− 1)
φ

)
Δφ =

16πG
c2

∑
a

maδa . (17)

The exact solution of this equation, in the limit of 3-dimensional space, uniquely
results in, cf. [2], [3],

φ =
4G
c2

(
α1

r1
+
α2

r2

)
, (18)

where ra denotes the euclidean distance between xi and xia. The solution (18)
has been achieved by the aid of the inverse Laplacian in d-dimensional space [9]

−Δ−1δa =
Γ ((d− 2)/2)

4πd/2
r2−d
a (19)

and the related ansatz

φ =
2G
c2
d− 1
d− 2

(
α1

rd−2
1

+
α2

rd−2
2

)
. (20)

The insertion of this ansatz into (17), for 1 < d < 2, yields a well-defined
finite solution using the property r2−d

a δa = 0. The analytic continuation of the
obtained solution to 3-dimensional space results in the final solution (18). The
coefficients αa, for d = 3, read [12]

αa =
ma −mb

2
+
c2rab
G

⎛⎝√1 +
ma +mb

c2rab/G
+
(
ma −mb

2c2rab/G

)2

− 1

⎞⎠ , (21)

where rab denotes the euclidean distance between xia and xib.
The Brill-Lindquist Hamilton function results in, see (7) and (17),

HBL = (α1 + α2) c2 = (m1 +m2) c2 −G
α1α2

r12
. (22)

It describes the total (initial) energy between two uncharged Brill-Lindquist
black holes. Notice that the Hamiltonian is well-behaved in the limit r12 → 0.
Therefore, full GR shows up no infinite self-energies. The dimensional regular-
ization approach from fictitious d-dimensional space parallels the finiteness of
black-hole self-energies in physical space in the sense that it also produces finite,
in latter case zero, self-energies (the naked masses in [2] are identical with the
bare masses when dimensional regularization is applied).
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3 Post-Newtonian Expansion

The expansion of the Brill-Lindquist Hamilton function in powers of 1/c2, i.e.

HBL −mc2 =
∞∑
n=0

(
1
c2

)n
Hn(r12) , (23)

is well-defined if Gm/r12 < c2 is valid with m = m1 +m2. H0 is the Newtonian
energy and Hn is called the nth-Post-Newtonian (nPN) one. The generaliza-
tion of such a post-Newtonian expansion to arbitrary Hamiltonians, respectively
Routh functionals, reads

R
[
xia, pai, h

TT
ij , ∂th

TT
ij

]
−mc2 =

∞∑
n=0

(
1
c2

)n
Rn

[
xia, pai, ĥ

TT
ij , ∂tĥ

TT
ij

]
, (24)

where GĥTT
ij = c4hTT

ij , with G being introduced for convenience. The expansion
(24) makes sense only if the occurring velocities and gravitational potentials are
small compared to the speed of light, respectively the squared of it. In the expan-
sion, ĥTT

ij has to be treated as independent from 1/c. In this way the expansion
guarantees that the gravitational field generated by the Newtonian black-hole
orbital dynamics starts with the correct power in 1/c2, namely (1/c2)2, see (26).
The insertion of the expansion (24) into (9) results in an inhomogeneous wave
equation of the form (also see [13])(

Δ− ∂
2
t

c2

)
hTT =

G

c4

∞∑
n=0

(
1
c2

)n
DTT
n [x, xa(t), pa(t), ĥTT(t), ∂tĥTT(t)] . (25)

This equation is solved order by order in the way explained above where the
ordering is defined by the orders of the source terms DTT

n . As the speed of
light appears in the d’Alembertian too, the solution will not have the same PN-
structure as the source part of the wave equation has. This poses however no
problems as a quantitative ordering is still achievable, cf. (26) below.

3.1 The Gravitational Radiation Field

The gravitational radiation field, in the asymptotic rest frame of the source, can
be put in the wave zone (w.z.) into the form (after repeated use of the (10)),
given here for 4-dimensional spacetime only [14],

hTT
ij (x, t) =

G

c4
Pijkm(n)

r

∞∑
l=2

{(
1
c2

)(l−2)/2 4
l!

M(l)
kmi3...il

(
t− r∗

c

)
Ni3...il

+
(

1
c2

)(l−1)/2 8l
(l + 1)!

εpq(k S
(l)
m)pi3...il

(
t− r∗

c

)
nq Ni3...il

}
, (26)

where MAl
and SAl

are symmetric and tracefree (STF) radiative mass and cur-
rent multipole moments which parametrize the radiation field in a cartesian
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basis. Al denotes a multi-index of length l, i.e. Al = Ai1i2...il , where the is
run over 1,2,3. NAl

= ni1ni2 ...nil , where ni is the unit normal in the direc-
tion of the radial vector x = rn, pointing from the source to the observer.
The parentheses around indices mean to take the symmetric part of the cor-
responding tensor. M(l) = dlM/dtl and S(l) = dlS/dtl, and Pijkl(n) denotes
the transverse-traceless projection orthogonal to x acting on symmetric tensors:
Pijkl(n) = (δik − nink)(δjl − njnl)− (δij − ninj)(δkl − nknl)/2. εijk is the usual
antisymmetric tensor of Levi-Civita. r∗ is the radial coordinate such that t− r∗
= const. describes the physical light propagation. The multipole moments are
given by space integrals over local expressions in time as well as by time in-
tegrals of those expressions. The latter non-local-in-time expressions are called
tail terms. The mass-quadrupole moment e.g., to 1.5PN order, is given by [15],
[16],

Mij

(
t− r∗

c

)
= M̂ij

(
t− r∗

c

)
+

2Gm
c3

∫ ∞

0
dv ln

( v
2b

)
M̂

(2)
ij

(
t− r∗

c
− v
)

+O(1/c4) , (27a)

r∗ = r +
2Gm
c2

ln
( r
cb

)
+O(1/c3) , (27b)

where M̂ij is a local-in-time expression which has to be calculated to 1/c2 accu-
racy. The parameter b is purely of gauge type. It drops out from all observations.
As seen from (26), the lowest gravitational multipole moments are the quadrupo-
lar ones (l = 2).

The gravitational energy flux is given by [14],

L(t) =
c3

32πG

∮
w.z.

(∂thTT
ij )2r2dΩ . (28)

Its decomposition in a power series in terms of 1/c2 may be written as

L =
G

5c5

∞∑
n=0

(
1
c2

)n
L̂n . (29)

The term GL̂n/5c5+2n is called the energy flux at the nPN order. Correspond-
ingly, the wave field which contributes to this power is called the wave field of
the nPN order. Assuming the well-established balance between energy flux and
(binding) energy loss of the source system [13], denoted by dE/dt, the following
equation holds

−
〈
dE(t)
dt

〉
= 〈L(t)〉 , (30)

where the brackets mean time-averaging over the longest orbital period. The rea-
son for this averaging procedure is the general radiation-emission property that
the local-in-time energy flux and the local-in-time energy loss are not necessarily
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identical at a specific instant of time because of field-energy that is floating forth
and back in the induction zone.

In the following we often will denote post-Newtonian orders of wave expres-
sions by nPN(W) and those of particle-motion expressions by nPN(M). Using
this convention, the nPN(W) energy flux then corresponds to the (n+5/2)PN(M)
energy loss. The 2PN(W) energy flux takes the form

L =
G

5c5

{
M(3)
ij M(3)

ij +
1
c2

[
5

189
M(4)
ijkM

(4)
ijk +

16
9

S(3)
ij S(3)

ij

]

+
1
c4

[
5

9072
M(5)
ijkmM(5)

ijkm +
5
84

S(4)
ijkS

(4)
ijk

]}
. (31)

4 Conservative Hamiltonian to 3PN Order

The unique conservative 3PN(M) Hamiltonian of our binary black-hole model
in 4-dimensional spacetime has been derived only recently using dimensional
regularization [3]. From all the applied methods only this one has turned out to
be fully satisfactory. In the following we will only give the result, in the center-of-
mass frame and in reduced variables, for details see [17] and references therein;
for the precise identification of the Brill-Lindquist case, see [18]. By the aid of
the following definitions

Ĥ =
Hco
μ

(32a)

p =
p̄1

μ
= − p̄2

μ
, q =

1
Gm

(x̄1 − x̄2) , q = qn̄ , n̄ · n̄ = 1 (32b)

μ =
m1m2

m
, ν =

μ

m
, 0 ≤ ν ≤ 1

4
(32c)

one gets the reduced Hamiltonian in the form,

Ĥ(q,p) = ĤN(q,p) +
1
c2
Ĥ1PN(q,p) +

1
c4
Ĥ2PN(q,p) +

1
c6
Ĥ3PN(q,p) , (33)

where

ĤN (q,p) =
p2

2
− 1
q
, (34a)

Ĥ1PN (q,p) =
1
8
(3ν − 1)(p2)2 − 1

2
[
(3 + ν)p2 + ν(n̄ · p)2

] 1
q

+
1

2q2
, (34b)

Ĥ2PN (q,p) =
1
16
(
1− 5ν + 5ν2) (p2)3

+
1
8
[(5− 20ν − 3ν2(p2)2 − 2ν2(n̄ · p)2p2 − 3ν2(n̄ · p)4]

1
q
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+
1
2
[(5 + 8ν)p2 + 3ν(n̄ · p)2]

1
q2
− 1

4
(1 + 3ν)

1
q3
, (34c)

Ĥ3PN (q,p) =
1

128
(
−5 + 35ν − 70ν2 + 35ν3) (p2)4

+
1
16
[(
−7 + 42ν − 53ν2 − 5ν3) (p2)3 + (2− 3ν)ν2(n̄ · p)2(p2)2

+ 3(1− ν)ν2(n̄ · p)4p2 − 5ν3(n̄ · p)6
] 1
q

+
[

1
16
(
−27 + 136ν + 109ν2) (p2)2 +

1
16

(17 + 30ν)ν(n̄ · p)2p2

+
1
12

(5 + 43ν)ν(n̄ · p)4
]

1
q2

+
{[
−25

8
+
(

1
64
π2 − 335

48

)
ν − 23

8
ν2
]
p2

+
(
−85

16
− 3

64
π2 − 7

4
ν

)
ν(n̄ · p)2

}
1
q3

+
[
1
8

+
(

109
12

− 21
32
π2
)
ν

]
1
q4
. (34d)

In the next Sect., orbital observables will be derived from this Hamiltonian. The
test body case is achieved by ν = 0, the equal-mass case by ν = 1/4.

4.1 Dynamical Invariants

The easiest way to calculate dynamical invariants is by the aid of the Hamilton-
Jacobi theory [10]. The knowledge of the (reduced) radial action ir(E, j), where
E is the numerical value of Ĥ(q,p) and where j is the absolute value of the
reduced angular momentum q×p, immediately leads to the fractional periastron
advance per orbital revolution k = (Φ− 2π)/2π and to the orbital period P ,

Φ

2π
= 1 + k = − ∂

∂j
ir(E, j) , (35)

P

2πGm
=
∂

∂E
ir(E, j) . (36)

The explicit expressions read

k =
1
c2

3
j2

{
1 +

1
c2

[
5
4
(7− 2ν)

1
j2

+
1
2
(5− 2ν)E

]

+
1
c4

[
a1(ν)

1
j4

+ a2(ν)
E

j2
+ a3(ν)E2

]}
(37)
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and
P

2πGm
=

1
(−2E)3/2

{
1− 1

c2
1
4
(15− ν)E

+
1
c4

[
3
2
(5− 2ν)

(−2E)3/2

j
− 3

32
(35 + 30ν + 3ν2)E2

]

+
1
c6

[
a2(ν)

(−2E)3/2

j3
− 3a3(ν)

(−2E)5/2

j
+ a4(ν)E3

]}
, (38)

where

a1(ν) =
5
2

(
77
2

+
(

41
64
π2 − 125

3

)
ν +

7
4
ν2
)
, (39a)

a2(ν) =
105
2

+
(

41
64
π2 − 218

3

)
ν +

45
6
ν2, (39b)

a3(ν) =
1
4
(5− 5ν + 4ν2) , (39c)

a4(ν) =
5

128
(21− 105ν + 15ν2 + 5ν3) . (39d)

The years-long measurements of the orbital motion of the Hulse-Taylor binary
pulsar PSR1913+16 have become such accurate that the 2PN(M) structure of k
and P has been reached observationally [19], [20]. The applicability of the binary
point-mass 2PN(M) equations of motion to neutron stars has been explored in
several publications [21], [22], [23], [24], [25].

In the case of circular orbits, the angular frequency is a straightforward
observable of the orbital motion. It relates to the radial and periastron-advance
frequencies in the following way,

ωcirc = ωradial + ωperiastron = 2π
1 + k
P

. (40)

In terms of the dimensionless quantity x, defined by

x =
(
Gmωcirc

c3

)2/3

, (41)

the binding (reduced) energy for circular orbits is given by

Ecirc(x; ν) = −1
2
x
[
1 + E1(ν)x+ E2(ν)x2 + E3(ν)x3 +O(x4)

]
, (42)

where

E1(ν) = − 1
12

(9 + ν) , (43a)

E2(ν) = − 1
24

(81− 57ν + ν2) , (43b)

E3(ν) = −10
3

(
405
128

+
1
64

(
41π2 − 6889

6

)
ν +

31
64
ν2 +

7
3456

ν3
)
. (43c)
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In the test body case (small black hole in the field of a heavy one), the binding
energy is known exactly, reading

Ecirc(x; ν = 0) =
1− 2x√
1− 3x

− 1 . (44)

The innermost stable circular orbit, in the literature also called last stable
orbit (LSO), is given by the minimum of the function Ecirc(x), respectively
the function jcirc(x) because of the relation dEcirc = x3/2djcirc, e.g. see [17].
At the minimum, dEcirc(x)/dx = 0 holds. The test body case yields xLSO =
1/6 (Schwarzschild value). For equal-mass black holes (ν = 1/4), xLSO turns
out to be 0.255 taking into account (42) and (43). An a-priori-improved 3PN-
calculation, using an effective and Padé-improved one-body approach, yielded
the value 0.198, see [17]. Obviously, further investigations are needed for better
insight into the location of the LSO for binary black holes.

5 Energy Loss and Gravitational Wave Emission

In Sect. 3.1 we have seen that the energy flux to nPN(W) order implies energy
loss to (n+5/2)PN(M) order. Hereof it follows that energy-loss calculations are
quite efficient via energy-flux calculations. Because of this we will apply the
balance property between emitted and lost energies to easily derive the energy
loss from the energy flux. In general, only after averaging over orbital periods
both expressions coincide (see (30)). In case of circular orbits, however, this
averaging procedure is not needed.

5.1 Orbital Decay to 4.5PN Order

The binding energy of our binary system is given by μEcirc. Therefore, for the
energy loss we get

−μdEcirc

dt
= L =

32c5

5G
ν2x5

[
1 +
(
−1247

336
− 35

12
ν

)
x+ 4πx3/2

+
(
−44711

9072
+

9271
504

ν +
65
18
ν2
)
x2
]
, (45)

where the 2PN(W) energy flux is from [26]; for the 3.5PN(W) energy flux see
[27], [28].

Taking into account (32) we obtain a differential equation for x which is
easily solved with accuracy 1/c9. In terms of the dimensionless time variable

τ =
νc3

5Gm
(tc − t) , (46)
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where tc denotes the coalescence time, the solution reads [26],

x =
1
4
τ−1/4

[
1 +
(

743
4032

+
11
48
ν

)
τ−1/4 − 1

5
πτ−3/8

+
(

19583
254016

+
24401
193536

ν +
31
288
ν2
)
τ−1/2

]
. (47)

Taking into account the relation between phase and frequency dφ/dt = ω,
respectively dφ/dτ = −5x3/2/ν, the phase evolution results in

φ = φc −
1
ν
τ5/8

[
1 +
(

3715
8064

+
55
96
ν

)
τ−1/4 − 3

4
πτ−3/8

+
(

9275495
14450688

+
284875
258048

ν +
1855
2048

ν2
)
τ−1/2

]
. (48)

5.2 Gravitational Waveform to 2PN Order

The radiation field can be decomposed into two orthogonal polarization states.
The polarization states h+ and h× are defined by

h+ =
1
2
(uiuj − vivj)hTT

ij , (49a)

h× =
1
2
(uivj + viuj)hTT

ij , (49b)

where u and u denote two vectors in the polarization plane forming an orthog-
onal right-handed triad with the direction n from the source to the detector.
The detector is directly sensitive to a linear combination of the polarization
waveforms h+ and h×, namely

h(t) = F+h+(t) + F×h×(t) , (50)

where F+ and F× are the so-called beam-pattern functions of the detector de-
pending on two angles giving the direction −n of the source as seen from the
detector and a polarization angle specifying the orientation of the vectors u and
v around that direction (for explicit expressions, see [29]).

For our binary system, the two polarizations h+ and h× are chosen such that
the polarization vectors u and v lie respectively along the major and minor axis
of the projection onto the plane of the sky of the circular orbit, with u oriented
toward the ascending node, the point at which black hole 1 crosses the plane of
the sky moving towards the observer. The result, to 2PN(W) order, reads [30]

h+,× =
2Gμx
c2r

[
H

[0]
+,× + x1/2H

[1/2]
+,× + xH [1]

+,× + x3/2H
[3/2]
+,× + x2H

[2]
+,×
]
, (51)
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where the plus polarization is given by

H
[0]
+ = −(1 + c2i )cos2ψ , (52a)

H
[1/2]
+ = −si

8
δm

m
[(5 + c2i )cosψ − 9(1 + c2i )cos3ψ] , (52b)

H
[1]
+ =

1
6
[19 + 19c2i − 2c4i − ν(19− 11c2i − 6c4i )]cos2ψ

− 4
3
s2i (1 + c2i )(1− 3ν)cos4ψ , (52c)

H
[3/2]
+ =

si
192

δm

m
{[57 + 60c2i − c4i − 2ν(49− 12c2i − c4i )]cosψ

− 27
2

[73 + 40c2i − 9c4i − 2ν(25− 8c2i − 9c4i )]cos3ψ

+
625
2

(1− 2ν)s2i (1 + c2i )cos5ψ} − 2π(1 + c2i )cos2ψ , (52d)

H
[2]
+ =

1
120

[22 + 396c2i + 145c4i − 5c6i +
5
3
ν(706− 216c2i − 251c4i + 15c6i )

− 5ν2(98− 108c2i + 7c4i + 5c6i )]cos2ψ

+
2
15
s2i [59 + 35c2i − 8c4i −

5
3
ν(131 + 59c2i − 24c4i )

+ 5ν2(21− 3c2i − 8c4i )]cos4ψ

− 81
40

(1− 5ν + 5ν2)s4i (1 + c2i )cos6ψ

+
si
40
δm

m
{[11 + 7c2i + 10(5 + c2i )ln2]sinψ − 5π(5 + c2i )cosψ

− 27[7− 10ln(3/2)](1 + c2i )sin3ψ + 135π(1 + c2i )cos3ψ} , (52e)

and the cross polarization by

H
[0]
× = −2cisin2ψ , (53a)

H
[1/2]
× = −3

4
sici

δm

m
[sinψ − 3sin3ψ] , (53b)

H
[1]
× =

ci
3

[17− 4c2i − ν(13− 12c2i )]sin2ψ

− 8
3
cis

2
i (1− 3ν)sin4ψ , (53c)

H
[3/2]
× =

sici
96
δm

m
{[63− 5c2i − 2ν(23− c2i )]sinψ

− 27
2

[67− 15c2i − 2ν(19− 15c2i )]sin3ψ
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+
625
2

(1− 2ν)s2i sin5ψ} − 4πcisin2ψ , (53d)

H
[2]
× =

ci
60

[68 + 226c2i − 15c4i +
5
3
ν(572− 490c2i + 45c4i )

− 5ν2(56− 70c2i + 15c4i )]sin2ψ

+
4
15
cis

2
i [55− 12c2i −

5
3
ν(119− 36c2i )

+ 5ν2(17− 12c2i )]sin4ψ

− 81
20

(1− 5ν + 5ν2)cis4i sin6ψ

− 3
20
sici

δm

m
{[3 + 10ln2]cosψ + 5πsinψ

− 9[7− 10ln(3/2)]cos3ψ − 45πsin3ψ} , (53e)

where ci = cosi and si = sini and i denotes the inclination angle between
the direction of the detector, as seen from the binary’s center-of-mass, and the
normal to the orbital plane which is assumed to be right-handed with respect to
the sense of motion so that 0 ≤ i ≤ π. δm = m1 −m2, and the phase variable ψ
is given by

ψ = φ− 3x3/2ln
(
x

x0

)
, (54)

where φ is the actual orbital phase of the binary, namely the angle oriented
in the sense of motion between the ascending node and the direction of black
hole 1 (φ = 0 mod 2π when the two black holes lie along u, with black hole
1 at the ascending node). The logarithmic phase modulation originates from
the propagation of tails in the wave zone. The constant scale x0 can be chosen
arbitrarily; it relates to the arbitrary constant b in the (27).

6 Concluding Remarks

In this paper we have presented the conservative dynamics of the orbital motion
of Brill-Lindquist binary black holes up to the 3PN(M) order and the emitted
gravitational waves to 2PN(W) order. Corresponding to the latter, the radiation
damping has been given to 4.5PN(M) order.

On the level of motion of binary black holes, known are the equations of
motion to the 3.5PN(M) order [3], [31], [25] as well as the radiation damping
(energy loss) to the 6PN(M) order apart from a few terms at the 5.5PN(M)
order [28]. When no eternal black holes are considered but forming ones, a fluid
matter approach is appropriate. Here, the derivation of the 3PN(M) equations
of motion is progressing [24], [25].

On the level of gravitational waves from binary black holes, the 3.5PN(W)
waveform is known apart from a few terms at the 3PN(W) order [28]. All the
unknown terms mentioned above may probably be calculable uniquely using
dimensional regularization.
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12. P. Jaranowski, G. Schäfer: Phys. Rev. D60, 124003 (1999)
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The Detection of Gravitational Waves
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Abstract. This chapter is concerned with the question: how do gravitational waves
(GWs) interact with their detectors? It is intended to be a theoretical review of the
fundamental concepts involved in interferometric and acoustic (Weber bar) GW an-
tennas. In particular, the type of signal the GW deposits in the detector in each case
will be assessed, as well as its intensity and deconvolution. Brief reference will also be
made to detector sensitivity characterisation, including very summary data on current
state of the art of GW detectors.

1 Introduction

Gravitational waves (GW), on very general grounds, seem to be a largely un-
avoidable consequence of the well established fact that no known interaction
propagates instantly from source to observer: gravitation would be the first ex-
ception to this rule, should it be described by Newton’s theory. Indeed, the
Newtonian gravitational potential φ(x, t) satisfies Poisson’s equation

∇2φ(x, t) = −4πG�(x, t) , (1)

where �(x, t) is the density of matter in the sources of gravitational fields, and
G is Newton’s constant. But, since (1) contains no time derivatives, the time
dependence of φ(x, t) is purely parametric, i.e., time variations in �(x, t) in-
stantly carry over to φ(x, t), irrespective of the value of x. So, for example,
non-spherically symmetric fluctuations in the mass distribution of the Sun (such
as e.g. those caused by solar storms) would instantly and simultaneously be felt
both in the nearby Mercury and in the remote Pluto. . .

Quite independently of the quantitative relevance of such instant propagation
effect in this particular example – which is none in practice –, its very existence
is conceptually distressing. In addition, the asymmetry between the space and
time variables in (1) does not even comply with the basic requirements of Special
Relativity.

Einstein’s solution to the problem of gravity, General Relativity (GR), does
indeed predict the existence of radiation of gravitational waves. As early as 1918,
Einstein himself provided a full description of the polarisation and propagation
properties of weak GWs [1]. According to GR, GWs travel across otherwise flat
empty space at the speed of light, and have two independent and transverse
polarisation amplitudes, often denoted h+(x, t) and h×(x, t), respectively [2].
In a more general framework of so called metric theories of gravity, GWs are

L. Fernández-Jambrina, L.M. González-Romero (Eds.): LNP 617, pp. 210–241, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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allowed to have up to a maximum 6 amplitudes, some of them transverse and
some longitudinal [3].

The theoretically predicted existence of GWs poses of course the experimen-
tal challenge to measure them. Historically, it took a long while even to attempt
the construction of a gravitational telescope: it was not until the decade of the
1960’s that J. Weber first took up the initiative, and developed the first grav-
itational antennas. These were elastic cylinders of aluminum, most sensitive to
short bursts (a few milliseconds) of GWs. After analysing the data generated
by two independent instruments, and looking for events in coincidence in both,
he reported evidence that a considerably large number of GW flares had been
sighted [4].

Even though Weber never gave up his claims of real GW detection [5], his
contentions eventually proved untenable. For example, the rate and intensity of
the reported events would imply the happening of several supernova explosions
per week in our galaxy [6], which is astrophysically very unlikely.

It became clear that more sensitive detectors were necessary, whose design
and development began shortly afterwards. In the mid 1970’s and early eight-
ies, the new concept of interferometric GW detector started to develop [7,8],
which would later lead to the larger LIGO and VIRGO projects, as well as
others of more reduced dimensions (GEO-600 and TAMA), and to the future
space antenna LISA. In parallel, cryogenic resonant detectors were designed and
constructed in several laboratories, and towards mid 1990’s the next genera-
tion of ultracryogenic antennas, NAUTILUS (Rome), AURIGA (Padua), AL-
LEGRO (Baton Rouge, Louisiana) and NIOBE (Australia), began taking data.
More recently, data exchange protocols have been signed up for multiple detec-
tor coincidence analysis [9]. Based on analogous physical principles, new gen-
eration spherical GW detectors are being programmed in Brazil, Holland and
Italy [10,11,12].

In spite of many years of endeavours and hard work, GWs have proved elusive
to all dedicated detectors constructed so far. However, the discovery of the binary
pulsar PSR 1913+16 by R. Hulse and J. Taylor in 1974 [13], and the subsequent
long term detailed monitoring of its orbital motion, brought a breeze of fresh air
into GW science: the measured decay of the orbital period of the binary system
due to gravitational bremsstrahlung accurately conforms to the predictions of
General Relativity. Hulse and Taylor were awarded the 1993 Nobel Prize in
Physics for their remarkable work. As of 1994 [14], the accumulated binary pulsar
data confirm GR to a high precision of a tenth of a percent1.

The binary pulsar certainly provides the most compelling evidence to date
of the GW phenomenon as such, yet it does so thanks to the observation of
a back action effect on the source. Even though I do not consider accurate the
statement, at times made by various people, that this is only indirect evidence of
GWs, it is definitely a matter of fact that there is more to GWs than revealed by
the binary pulsar. . . For example, amplitude, phase and polarisation parameters
1 It seems that priorities in pulsar observations have since shifted to other topics of as-

trophysical interest, so it is difficult to find more recent information on PSR 1913+16.
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of a GW can only be measured, according to current lore, with dedicated GW
antennas.

But how do GW telescopes interact with the radiation they are supposed
to detect? This is of course a fundamental question, and is also the subject of
the present contribution, where I intend to review the theoretical foundations of
this problem, and its solutions as presently understood. In Sect. 2, I summarise
the essential properties of GWs within a rather large class of possible theories
of the gravitational interaction; Sect. 3 briefly bridges the way to Sects. 4 and 5
where interferometric and acoustic detector concepts are respectively analysed
in some detail. Sect. 5 also includes aboundant reference to new generation
spherical detectors in its various variants (solid, hollow, dual). For the sake of
completeness, I have added a section (Sect. 6) with a very short summary of
detector characterisation concepts, so that the interested reader gets a flavour
of how sensitivities are defined, what do they express and how do GW signals
compare with local noise disturbances in currently conceived detectors. Sect. 7
closes the paper with a few general remarks.

2 The Nature of Gravitational Waves

Quite generally, a time varying mass-energy distribution creates in its surround-
ings a time varying gravitational field (curvature). As already stressed in Sect. 1,
we do not expect such time variations to travel instantly to distant places, but
rather that they travel as gravity waves across the intervening space.

Now, how are these waves “seen”? A single observer may of course not feel
any variations in the gravitational field where he/she is immersed, if he/she is
in free fall in that field – this is a consequence of the Equivalence Principle [15].
Two nearby observers have instead the capacity to do so: for, both being in free
fall, they can take each other as a reference to measure any relative accelerations
caused by a non-uniform gravitational field, in particular those caused by a
gravitational wave field. We can rephrase this argument saying that gravitational
waves show up as local tides, or gradients of the local gravitational field at the
observatory.

In the language of Differential Geometry, tides are identified as geodesic de-
viations, i.e., variations in the four-vector connecting nearby geodesic lines. It is
shown in textbooks, e.g. [2], that the geodesic deviation equation is

D2ξμ
ds2

= Rμν�σ ẋν ẋσξ� , (2)

where “D” means covariant derivative, s is proper time for either geodesic, Rμν�σ
is the Riemann tensor, ẋν is a unit tangent vector (again to either geodesic),
and ξμ is the vector connecting corresponding points of the two geodesic lines.

The GW fields considered in this paper will be restricted to a class of per-
turbations of the geometry of otherwise flat space-time, with the additional as-
sumptions that they be
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– small
– time-dependent
– vacuum perturbations.

This is certainly not the most general definition of a GW yet it will suffice
to our purposes here: any GWs generated in astrophysical sources and reaching
a man-made detector definitely satisfy the above requirements. The interested
reader is referred to [16] for a thorough treatment of more general GWs.

Following the above assumptions, a GW can be described by perturbations
hμν(x, t) of a flat Lorentzian metric ημν , i.e., there exist quasi-Lorentzian coor-
dinates (x, t) in which the space-time metric gμν(x, t) can be written

gμν(x, t) = ημν + hμν(x, t) (3)

with
ημν = diag (−1, 1, 1, 1) , |hμν(x, t)|  1 . (4)

The actual effect of a GW on a pair of test particles is, according to (2),
determined by the Riemann tensor Rμν�σ, and this in turn is determined by the
functions hμν . I now review briefly the different possibilities in terms of which
the theory underlying the physics of gravity waves is, i.e., which are the field
equations which the hμν satisfy.

2.1 Plane GWs According to General Relativity

The vacuum field equations of General Relativity are, as is well known [2],

Rμν = 0 , (5)

where Rμν is the Ricci tensor of the metric gμν . If quadratic and successively
higher order terms in the perturbations hμν are neglected, then this tensor can
be seen to be given by

Rμν = �h̄μν − ∂μ∂�h̄�ν − ∂ν∂�h̄�μ , (6)

with
� ≡ ημν ∂μ∂ν , h̄μν ≡ hμν − 1

2 h ημν , h ≡ ημν hμν . (7)

New coordinates (x′, t′) can be defined by means of transformation equations

x′μ = xμ + εμ(x, t) , (8)

and these will still be quasi-Lorentzian if the functions εμ(x, t) are sufficiently
small. More precisely, the GW components are, in the new coordinates,

h′
μν = hμν − ∂μεν − ∂νεμ (9)

provided higher order terms in εμ are neglected. Thus “sufficiently small” means
that the derivatives of εμ be of the order of magnitude of the metric perturbations
hμν – so that in the new coordinates x′μ the metric tensor also splits up as
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g′
μν = ημν + h′

μν . It is now possible, see [2], to choose new coordinates in such a
way that the gauge conditions

∂ν h̄
ν
� = 0 (10)

hold. This being the case, (5) read

�h̄μν = 0 , (11)

which are vacuum wave equations. Therefore GWs travel across empty space
at the speed of light, according to GR theory. Plane wave solutions to (11)
satisfying (10) can now be constructed [2] which take the form

hμν(x, t) = hTT
μν (x, t) =

⎛⎜⎜⎝
0 0 0 0
0 h+(t− z) h×(t− z) 0
0 h×(t− z) −h+(t− z) 0
0 0 0 0

⎞⎟⎟⎠ (12)

for waves travelling down the z-axis. The label TT is an acronym for transverse-
traceless, the usual denomination for this particular gauge.

The physical meaning of the polarisation amplitudes in (12) is clarified by
looking at the effect of an incoming wave on test particles. Consider e.g. two
equal test masses whose center of mass is at the origin of TT coordinates; let
�0 be their distance in the absence of GWs, and (θ, ϕ) the orientation (relative
to the TT axes) of the vector joining both masses. Making use of the geodesic
deviation equation (2), with the Riemann tensor associated to (12), it can be
seen that the GW only affects the transverse projection of the distance relative
to the wave propagation direction (the z-axis); in fact, if �(t) ≡ (ξμ ξμ)1/2 is such
distance, then some simple algebra leads to the result2

�(t) = �0

[
1 +

1
2
{h+(t) cos 2ϕ+ h×(t) sin 2ϕ} sin2 θ

]
. (13)

It is very important at this point to stress that the wavelength λ of the
incoming GW must be much larger than the distance �(t) between the particles
for (13) to hold, i.e.,

�(t) λ , (14)

and this is a condition which must be added to the already made assumption
that |hμν |  1.

A graphical representation of the result (13) is displayed in Fig. 1: a number of
test particles are evenly distributed around a circle perpendicular to the incoming
GW, i.e., in the xy plane. When a periodic signal comes in, the distances between
those particles change following (13); note that the changes are modulated by
the angular factors, i.e., according to the positions of the particles on the circle.
The “+” mode is characterised by a vanishing wave amplitude h×, while in the
“×” mode h+ vanishes.
2 Note that the Riemann tensor is calculated at the center of mass of the test particles,

therefore at x = 0. But it can also be calculated at the position of either one of
them – this would only make up for a negligible second order difference.
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Fig. 1. The “+” and “×” polarisation modes of a GW, according to GR theory. The
dotted lines (circles) indicate the position of the test particles in the absence of GW
signal. Each step in the graph corresponds to a quarter of the period of the driving
GW, as labelled atop

2.2 Plane GWs According to Metric Theories of Gravity

Although General Relativity has never been questioned so far by experiment,
there are in fact alternative theories, e.g. Brans-Dicke theory [17], which are
interesting for a number of reasons, for example cosmological reasons [18]. Gen-
erally, these theories make their own specific predictions about GWs, and they
partly differ from those of GR – just discussed. The term metric theory indi-
cates that the gravitational interaction affects the geometry of space-time, i.e.,
the metric tensor gμν is a fundamental ingredient – though other fields may also
be necessary to complete the theoretical scheme. Obviously, General Relativity
falls within this class of theories.

The appropriate scheme to assess the physics of such more general class of
GWs was provided long ago [19]. The idea is to consider only plane gravitational
waves, which should be an extremely good approximation for astrophysics, given
our great distance even to the nearest conceivable GW source, and to characterise
them by their Newman-Penrose scalars [20].

It appears that only six components of the Riemann tensor out of the usual 20
are independent in a plane GW; these are given by the four Newman-Penrose
scalars

Ψ2(v),Ψ3(v),Ψ4(v) and Φ22(v) , (15)

of which Ψ2 and Φ22 are real, while Ψ3 and Ψ4 are complex functions of the
null variable v – see [20] for all notation details. If a quasi-Lorentzian coordinate
system is chosen such that GWs travel along the z-axis, then v = t− z and one
can calculate the scalars (15) to obtain

Ψ2(t− z) = −1
6 Rtztz , (16a)
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Ψ3(t− z) = −1
2 (−Rtxtz + iRtytz) , (16b)

Ψ4(t− z) = −Rtxtx +Rtyty + 2iRtxty , (16c)
Φ22(t− z) = −Rtxtx −Rtyty . (16d)

General Relativity is characterised by Ψ4(t − z) being the only non-vanishing
scalar, while in Brans-Dicke theory Φ22(t−z) also is different from zero – see [19]
for full details.

It is relevant to remark at this stage that the only non-trivial components
of the Riemann tensor of a plane GW are the so called “electric” components,
Rtitj , as we see in (16a–d) above. These are, incidentally, also the only ones
which appear in the geodesic deviation equation (2), since one may naturally
choose ẋμ = (1; 0, 0, 0)3.

This fact helps us make a graphical representation of all six possible polar-
isation states of a general metric GW in the same manner as in Fig. 1. The
result is represented in Fig. 2 – whose source is [3]. The idea is to take a ring of
test particles, let a GW pass by, and analyse the results of the displacements it
causes in the distributions of those particles, just as done in Sect. 2.2. Note that
the first three modes are transverse, while the other three are longitudinal – see
the caption to the figure. As already stressed, GR only gives rise to the two Ψ4
modes.

3 Gravitational Wave Detection Concepts

We are now ready to discuss the objectives and procedures to detect GWs:
knowing their physical structure, one can design systems whose interaction with
the GWs be sufficiently well understood and under control; suitable monitoring
of the dynamics of such systems will be the source of information on whatever
GW parameters may show up in a given observation experiment.

There are two major detection concepts: interferometric and acoustic detec-
tion. Historically, the latter came first through the pioneering work of J. Weber,
but interferometric GW antennas are at present attracting the larger stake of
the investment in this research field, both in hardware and in human commit-
ment. This is because much hope has been deposited in their capabilities to reach
sufficient sensitivity to measure GWs for the first time.

Interferometric detectors aim to measure phase shifts between light rays
shone along two different (straight) lines, whose ends are defined by freely sus-
pended test masses. This is done in a Michelson layout, using mirrors, beam
splitters and photodiodes. Acoustic detectors are instead based on elastically
linked test masses – rather than freely suspended – which resonantly respond to
GW excitations.
3 Note that, with this choice, Rμ�νσ ẋμẋν = Rt�tσ but, because of the symmetries of

the Riemann tensor, only values of � and σ different from zero, i.e., {�σ} = {ij},
give non-zero contributions.
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Fig. 2. The six polarisation modes of a plane, metric GW. The dotted and solid lines
correspond to distributions separated by a half period of the incoming wave, and it is
assumed that the particles lie on a circle when no GW is acting. Note the indicators
that the modes in the upper row are excited by a wave which arrives perpendicular
to the plane of the particles, while those in the lower row correspond to GWs which
are in the same plane as the particles. It must however be clarified that the mode Φ22

has spherical symmetry, so it includes a combination of longitudinal and transverse
excitations in like proportions

These qualitative ideas can be made quantitatively precise, but the process
is a non-trivial one and has important subtleties which must be properly un-
derstood for a thorough assessment of the detector workings and readout. The
next sections are devoted to explain with some detail which are the theoretical
principles governing the behaviour and response of both kinds of GW antennas.

4 Interferometric GW Detectors

A rather näıve idea to measure the effect of an incoming GW is provided by
the following argument – see also Fig. 3 for reference: let a GW having a “+”
polarisation (assume GR for simplicity at this stage) come in perpendicular to
the local horizontal at a given observatory; if three masses are laid down on the
vertices of an ideally oriented isosceles right triangle then, as we saw (Fig. 1), the
catets shrink and stretch with opposite phases. If a beam of laser light is now
shone into the system, and a beam-splitter attached to mass M0 and mirrors
attached to M1 and M2, then one can think of measuring the distance changes
between the masses by simple interferometry.
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Fig. 3. The “näıve” interferometric detector concept: a GW coming perpendicular to
the plane of the sheet, “+” polarised relative to the x and y axes, causes the end masses
M1 and M2 to oscillate in phase opposition relative to the central mass M0. Light is
shone into the system, and suitable beam splitters and mirrors are attached to the
masses; length changes are then measured interferometrically, which directly lead to
determine the GW amplitude

This may look like a very reasonable proposal for a detector yet the follow-
ing criticism readily suggests itself: gravitation is concerned with geometry, i.e.,
gravitational fields alter lengths and angles; therefore GWs will affect identi-
cally both distances between the masses of Fig. 3 and the wavelength of the
light travelling between them – thus leading to a cancellation of the conjectured
interferometric effect. . .

While the criticism is certainly correct, the conclusion is not. The reason is
that it overlooks the fact that gravitation is concerned with the geometry of
space-time – not just space. In the case of the above GW it so happens that,
in TT coordinates, the time dimension of space-time is not warped in the GW
geometry – see the form of the metric tensor in (12) – while the transverse space
dimensions are. Consequently an electromagnetic wave travelling in the xy plane
experiences wavelength changes depending on the propagation direction, but it
does not experience frequency changes. The net result of this is that the phase
of the electromagnetic wave differs from direction to direction of the xy plane,
and this makes a GW amenable to detection by interferometric principles.

Looked at in this way, the masses represented in Fig. 3 only play a passive
role in the detector, in the sense that they simply make the interference between
the two light beams possible by providing physical support for the mirrors and
beam splitters. In other words, the physical principles underlying the working
of an interferometric GW detector must have to do with the interaction between
GWs and electromagnetic waves rather than with geodesic deviations of the
masses.

Admittedly, this is not the most common point of view [21]. It can however
be made precise by the following considerations, which are studied in depth in
[22] and [23].
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4.1 Test Light Beams in a GW-Warped Space-Time

According to the above, it seems that we must address the question of how
GW-induced fluctuations in the geometry of a background space-time affect the
properties (amplitude and phase) of a plane electromagnetic wave – a light beam –
which travels through such space-time. It will be sufficient to consider that the
light beam is a test beam, i.e., its back action on the surrounding geometry is
negligible.

Let then Aμ(x, t) be the vector potential which describes an electromagnetic
wave travelling in vacuum; Aμ thus satisfies Maxwell’s equations

�Aμ = 0 , (17)

where � stands for the generalised d’Alembert operator:

� ≡ g�σ∇�∇σ . (18)

We need only retain first order terms in hμν in the covariant derivatives, so
that (17) reads

�Aμ � η�σ (∂�∂σAμ − 2Γ νμσ ∂�Aν − Γ ν�σ ∂νAμ −Aν ∂�Γ νμσ) = 0 , (19)

To this equation, gauge conditions must be added. We shall conventionally adopt
the usual Lorentz conditions, ∇μAμ = 0, which, to lowest order in the gravita-
tional perturbations, read

∇μAμ � −∂tAt + ∂xAx + ∂yAy + ∂zAz − hμν ∂μAν = 0 . (20)

In addition to the weakness of the GW perturbation, it is also the case in
actual practice that:

• The GW typical frequencies, ω, are much smaller than the frequency of the
light, Ω: ω  Ω.

• The wavelength of the GW is much larger than the cross sectional dimensions
of the light beam.

Wave front distortions and beam curvature are effects which can also be safely
neglected in first order calculations [23]. Finally, I shall make the simplifying
assumption of perpendicular incidence, i.e., the incoming GW propagates in a
direction orthogonal to the arms of the interferometer4.

We shall thus consider one of the interferometer arms aligned with the x-
direction, and the other with the y-direction, while the incoming GW will be
assumed to approach the detector down the z-axis. The interaction GW-light
beam will thus occur in the z = 0 plane, hence the GW perturbations can be
suitably described by a function of time alone, i.e.,

hμν(x, t) −→ hμν(ωt) , (21)
4 This condition can be easily relaxed, but it complicates the equations to an extent

which is inconvenient for the purposes of the present review. Details are fully given
in [22].
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where ω is the frequency of the GW, which we can also safely assume to be
plane-fronted, since its source will in all cases of interest be far removed from
the observatory. In addition, for a beam running along the x-axis, the elec-
tromagnetic vector potential will only depend on the space variable x and on
time, i.e.,

Aμ(x, t) −→ Aμ(x, t) . (22)

The following ansatz suggests itself as a solution to (19):

At (t, x) = ε0(ωt) , (23a)
Ax (t, x) = ε1(ωt) , (23b)
Ay (t, x) = a2 exp[iΩ (t− x)] eiφ2(ωt) , (23c)

Az (t, x) = a3 exp[iΩ (t− x)] eiφ3(ωt) , (23d)

where ε0(ωt), ε1(ωt), φ2(ωt) and φ3(ωt) are small quantities of order h, a2 and
a3 are constants, and Ω is the frequency of the light. Clearly, these expressions
reproduce the plane wave solutions to vacuum Maxwell’s equations in the limit
of flat space-time, i.e., when hμν = 0.

Let us now take an incoming GW of the form

h{+,×}(t) = H̃{+,×} eiωt , (24)

and substitute it into (19) and (20), with the ansatz (23a-d), neglecting higher
order terms in the ratio ω/Ω. Then [22], both φ2 and φ3 are seen to satisfy the
approximate differential equation

φ̈(t) +
2iΩ
ω
φ̇(t) +

iΩ2

ω2 h+(t) = 0 . (25)

The solution to this equation which is independent of the initial conditions is,
to the stated level of accuracy,

φ2(t) � φ3(t) �
Ω

2ω
H̃+ sinωt . (26)

As shown in [22], we need not worry about either ε0(ωt) or ε1(ωt) at this stage
because the longitudinal component of the electric field (i.e., Ex) is an order of
approximation smaller than the transverse components, which are given by

Ey = ∂tAy , Ez = ∂tAz , (27)

hence

Ey(x, t) � iΩ a2 exp
[
iΩ(t− x) + i

Ω

2ω
H̃+ sinωt

]
, (28a)

Ez(x, t) � iΩ a3 exp
[
iΩ(t− x) + i

Ω

2ω
H̃+ sinωt

]
. (28b)
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These expressions beautifully show how the incoming GW causes a phase
shift in an electromagnetic beam of light. Note that this phase shift is a periodic
function of time, with the frequency of the GW. If we consider a real interferom-
eter, such as it is very schematically shown in Fig. 3, and call τ the round trip
time for the light to go from M0 to M2 and back, then the accumulated phase
shift is, according to these formulas,

δxφ = 2× Ω

2ω
H̃+ sin

ωτ

2
, (29)

since there is an obvious symmetry between light rays travelling to the right and
to the left for a GW arriving perpendicularly to them5.

The arguments leading to (28a-b) can be very easily reproduced, mutatis
mutandi, to obtain the phase shift experienced by a light ray travelling in the y,
rather than the x direction – everything in fact amounts to a simple interchange
{x←→ y} in the equations, which includes {h+ ←→ −h+} as this is equivalent
to {hxx ←→ hyy}, see (12). The result is

δyφ = −2× Ω

2ω
H̃+ sin

ωτ

2
. (30)

In the actual interferometer, provided it has equal arm lengths, the two laser
rays recombine in the beam splitter with a net phase difference

δφ = δxφ− δyφ =
2Ω
ω
H̃+ sin

ωτ

2
, (31)

and this produces an interference signal, which is in principle measurable – if
the instrumentation is sufficiently sensitive.

The reader may wonder how it is that the detector signal only depends on one
of the GW amplitudes, h+, but not on the other, h×. The reason is that we have
made a very special assumption regarding the orientation of the polarisation
axes of the GW relative to the light beam propagation directions. In a realistic
case, even if perpendicular GW incidence happens, the arms of the detector
will not be aligned with the natural axes of the GW, let alone the most likely
case of oblique incidence. An important conclusion one should draw from this
section is a conceptual one, that interferometric detectors are able to measure
GW amplitudes and polarisations as a result of the interaction between the
electromagnetic field of light rays and the background space-time geometry they
travel across.

Beyond this, though, (31) has very relevant quantitative consequences, too.
For example, as stressed in [22], its range of validity is not limited to interfer-
ometer arms short compared to the GW wavelength. Therefore, according to
the formula, a null effect (signal cancellation) happens if the round trip time τ
equals the period of the GW, 2π/ω. Likewise, (31) also tells us that maximum
detector signal occurs when τ = π/ω. All this happen to be true for arbitrary
5 The reader is warned that this symmetry does not happen if the GW and the light

beam are not perpendicular, see [23].
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incidence and polarisation of the incoming GWs as well. For GW frequencies in
the 1 kHz range, the best detector should thus have arm lengths in the range of
150 kilometers – and even longer for lower GW frequencies. No ground based
GW antenna has ever been conceived of such dimensions yet there are intelli-
gent ways to store the light in shorter arms for suitably tuned GW periods. I
shall not go into details of these technical matters, see [8] and [21] for thorough
information.

l
l(t)

M MΩ

GWs

0

Fig. 4. The acoustic detector concept: a GW coming perpendicular to the spring drives
the two masses M at its ends to oscillate at the frequency of the GW. Resonant ampli-
fication is obtained when the latter equals the characteristic of the spring frequency, Ω

5 Acoustic GW Detectors

Acoustic GW detectors work based on a completely different concept – see Fig. 4:
the idea is to set up test masses M linked together by a spring of relaxed length
�0, so that GW tides drive their oscillations around the equilibrium position,
with significant mechanical amplification at the characteristic frequency of the
spring Ω. The spring deformation

q(t) ≡ �(t)− �0 (32)

thus obeys the following equation of motion6:

q̈(t) +Ω2q(t) =
1
2
�0ḧ(t) , (33)

where
h(t) = [h+(t) cos 2ϕ+ h×(t) sin 2ϕ] sin2 θ , (34)

as follows from (13) – see also [24] for a complete discussion of this case.
6 I shall not include any dissipative terms at this stage, for they do not influence the

key points of our present discussion.
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This is the main idea, but in practice acoustic GW detectors are elastic solids
rather than a single spring, i.e., they do not have a single characteristic frequency
but a whole spectrum. The response of an elastic solid to a GW excitation is
assessed by means of the classical theory of Elasticity, as described for example
in [25]. In such theory the deformations of the solid are given by the values of a
vector field of displacements, u(x, t), which satisfies the evolution equations

�
∂2u

∂t2
− μ∇2u− (λ+ μ)∇(∇·u) = f(x, t) , (35)

where � is the (undeformed) density of the solid, and λ and μ are its Lamé
coefficients, related to the Poisson ratio and Young modulus of the material the
solid is made of [25]. The function in the rhs of the equation is the density of
external forces driving the motion of the system; in the present case, these are
the tides generated by the sweeping GW, i.e.,

fi(x, t) = �Rtitj(t)xj , (36)

where Rtitj(t) are components of the Riemann tensor evaluated at a fixed point
of the solid, most expediently chosen at its center of mass. As already discussed
in Sect. 2.2, plane GWs have at most six degrees of freedom, adequately asso-
ciated with the six electric components of the Riemann tensor, Rtitj(t). The six
components are one monopole amplitude and five quadrupole amplitudes, and
this important structure is made clear by the following expression of the density
of GW tidal forces:

f(x, t) = f (0,0)(x) g(0,0)(t) +
2∑

m=−2

f (2,m)(x) g(2,m)(t) , (37)

which is entirely equivalent to (36) – see [26] –, and uses the common (l,m)
notation convention to indicate multipole terms. It is very important to stress
at this stage that f (l,m)(x) are pure form factors, simply depending on the fact
that tides are monopole-quadrupole quantities, while all the relevant dynamic
information carried by the GW is encoded in the time dependent coefficients
g(l,m)(t). According to these considerations, we see that the ultimate objective
of an acoustic GW antenna is to produce values of g(l,m)(t) – or indeed to
extract from the readout of the device as much information as possible about
those quantities.

Somewhat lengthy algebra permits to write down a formal solution to (36)
and (37) in terms of an orthogonal series expansion [26]:

u(x, t) =
∑
N

ω−1
N uN (x)

⎡⎢⎢⎣ ∑
l=0 and 2
m=−l,...,l

f
(l,m)
N g

(l,m)
N (t)

⎤⎥⎥⎦ , (38)

where

f
(l,m)
N ≡ 1

M

∫
Solid

u∗
N (x) · f (l,m)(x) d3x , (39a)
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g
(l,m)
N (t) ≡

∫ t

0
g(l,m)(t′) sinωN (t− t′) dt′ , (39b)

withM the whole mass of the solid; ωN is the (possibly degenerate) characteristic
frequency of the elastic body, and uN (x), the corresponding wavefunction, both
determined by the solution to the eigenvalue problem

μ∇2uN + (λ+ μ)∇(∇·uN ) = −ω2
N �uN , (40)

with the boundary conditions that the surface of the solid be free of any tensions
and/or tractions – see [26] for full details.

Historically, the first GW antennas were Weber’s elastic cylinders [4], but
more recently, spherical detectors have been seriously considered for the next
generation of GW antennas, as they show a number of important advantages
over cylinders. I shall devote the next sections to a discussion of both types of
systems, though clear priority will be given to spheres, due to their much richer
capabilities and theoretical interest.

5.1 Cylinders

First thing to study the response of an elastic solid to an incoming GW is, as we
have just seen, to determine its characteristic oscillation modes, i.e., its frequency
spectrum ωN and associated wavefunctions, uN (x). In the case of a cylinder this
is a formidable task; although its formal solution is known [27,28], cylindrical
antennas happen in practice to be narrow and long [29,30], and so approximate
solutions can be used instead which are much simpler to handle, and sufficiently
good – see also [15].

It appears that, in the long rod approximation, the most efficiently coupled
modes are the longitudinal ones, and these have typical sinusoidal profiles, of
the type

δz(z, t) ∝ sin
(nπz
L

)
sin
(
nπvst

L

)
, n = 1, 2, 3, . . . (41)

for a rod of length L whose end faces are at z = ±L/2, and in which the speed
of sound is vs. Figure 5 graphically shows the longitudinal deformations of the
cylinder which correspond to (41), including transverse distortions which, though
not reflected in the simplified equation (41), do happen in practice as a result of
the Poisson ratio being different from zero [25]. An important detail to keep in
mind is that odd n modes have maximum displacements at the end faces, while
even n modes have nodes there. In fact, the latter do not couple to GWs [24]. It
is also interesting to stress that the center of the cylinder is always a node – this
is relevant e.g. to suspension design issues [30].

A very useful concept to characterise the sensitivity of an acoustic antenna
is its cross section for the absorption of GW energy. If an incoming GW flux
density of Φ(ω) watts per square metre and hertz sweeps the cylinder and sets it
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Fig. 5. The first longitudinal oscillation mode of a long cylinder. Note that it has a
node at the center and maxima at the end faces. A whole period is represented, and
transverse deformations are also shown

to oscillate with energy E(ω) joules then the cross section is defined by the ratio

σabs(ω) =
E(ω)
Φ(ω)

, (42)

which is thus measured in m2 Hz. Simple calculations show that, for optimal
antenna orientation (perpendicular to the GW incidence direction) this quantity
is given by [24]

σabs(ωn) =
8
πn2

GMv2s
c3

, n = 1, 3, 5, . . . , (43)

where M is the total mass of the cylinder.
It is interesting to get a flavour of the order of magnitude this quantity has:

consider a cylinder of Al5056 (an aluminum alloy, for which vs � 5400 m/s),
3 metres long and 60 centimetres across, which has a mass of 2.3 tons7; the
above formula tells us that, for the first mode (n = 1),

σabs(ω1) = 4.3× 10−21 cm2 Hz . (44)
7 These figures correspond to a real antenna, see [29].
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This is a very small number indeed, and gives an idea of how weak the
coupling between GWs and matter is.

The weakness of the coupling gives an indication of how difficult it is to detect
GWs. By the same token, though, GWs are very weakly damped as they travel
through matter, which means they can produce information about otherwise
invisible regions, such as the interior of a supernova, or even the big bang.

Equation (43) is only valid for perpendicular GW incidence. If incidence is
instead oblique then a significant damping factor of sin4 θ comes in, where θ is
the angle between the GW direction and the axis of the cylinder [24]8. This is
a severe penalty, and it also happens in interferometric detectors not optimally
oriented [22,31].

5.2 Solid Spheres

The first initiatives to construct and operate GW detectors are due to J. Weber,
who decided to use elastic cylinders. This philosophy and practice has survived
him9, and still today (February 2002) all GW detectors in continuous data tak-
ing regimes are actually Weber bars, though with significant sensitivity improve-
ments [32] derived, amongst other, from ultracryogenic and SQUID techniques.

About ten years after Weber began his research, R. Forward published an
article [33] where he pondered in a semi-quantitative way the potential virtues
of a spherical, rather than cylindrical GW detector. Ashby and Dreitlein [34]
estimated how the whole Earth, as an auto-gravitating system, responds to GWs
bathing it, and later Wagoner [35] developed a theoretical model to study the
response of an elastic sphere to GW excitations.

Interest in this new theoretical concept then waned to eventually re-emerge
in the 1990s. The ALLEGRO detector group at Louisiana constructed a room
temperature prototype antenna [36,37], which produced sound experimental ev-
idence that it is actually possible to have a working system capable of making
multimode measurements – I’ll come to this in detail shortly –, thus proving
that a full-fledged spherical GW detector is within reach of current technologi-
cal state of the art, as developed for Weber bars. It was apparently the fears to
find unsurmountable difficulties in this problem which deterred further research
on spherical GW antennas for years [38].

In this section I will give the main principles and results of the theory of
the spherical GW detector, based on a formalism which has already been partly
used in Sect. 5, and for whose complete detail the reader is referred to [26].

As we have seen, first thing we need is the eigenmodes and frequency spectrum
of the spherical solid. This is a classical problem, long known in the literature,
the solution to which I will briefly review here, with some added emphasis on
the issues of our present concern.
8 Such factor can incidentally be inferred easily from (13), if one notices that the

energy of oscillation appearing in the numerator of (43) is proportional to �̇2.
9 Professor Joseph Weber died on 30th September 2000 at the age of 81.
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The oscillation eigenmodes of a solid elastic body fall into two families:
spheroidal and torsional modes [26]. Of these, only the former couple to GWs,
while torsional modes do not couple at all [39]. Spheroidal wavefunctions have
the analytic form

unlm(x) = Anl(r)Ylm(n)n−Bnl(r) in×LYlm(n) , (45)

where Ylm are spherical harmonics [40], n = x/R is the outward pointing nor-
mal, L is the ‘angular momentum operator’, L ≡ −ix × ∇, Anl(r) and Bnl(r)
are somewhat complicated combinations of spherical Bessel functions [26], and
{nlm} are ‘quantum numbers’ which label the modes. The frequency spectrum
appears to be composed of ascending series of multipole harmonics, ωnl, i.e., for
each multipole value l there are an infinite number of frequency harmonics, or-
dered by increasing values of n. For example, there are monopole frequency har-
monics ω10, ω20, ω30, etc.; then dipole frequencies ω11, ω21,. . . , then quadrupole
harmonics ω12, ω22, and so on. Each of these frequencies is (2l + 1)-fold degen-
erate, and this is a fundamental fact which makes of the sphere a theoretically
ideal GW detector, as we shall shortly see.

If the above expressions are substituted into (39a-b), then into (38), one
easily obtains the response of the sphere function as

u(x, t) =
∞∑
n=1

an0

ωn0
un00(x) g(0,0)n0 (t)

+
∞∑
n=1

an2

ωn2

[
2∑

m=−2

un2m(x) g(2,m)
n2 (t)

]
, (46)

where

an0 = − 1
M

∫ R

0
An0(r) � r3 dr , (47a)

an2 = − 1
M

∫ R

0
[An2(r) + 3Bn2(r)] � r3 dr , (47b)

and

g
(l,m)
nl (t) ≡

∫ t

0
g(l,m)(t′) sinωnl(t− t′) dt′ . (48)

The series expansion (46) transparently shows that only monopole and qua-
drupole spherical modes can possibly be excited by an incoming GW. The
monopole will of course not be excited at all if General Relativity is the true the-
ory of gravitation. A spherical solid is thus seen to be the best possible shape for
a GW detector. This is because of the optimality of the overlap coefficients anl
between the universal form factors f (l,m)(x) and the eigenmodes of the sphere
unlm(x), which comes about due to the clean multipole structure of the latter:
only the l= 0 and l= 2 spheroidal modes couple to GWs, hence all the GW energy
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is deposited into them, and only them. Any other shape of solid, e.g. a cylinder,
has eigenmodes most of which have some amount of monopole/quadrupole pro-
jections in the form of the coefficients (39a), and this means the incoming GW
energy is distributed amongst many modes, thus making detection less efficient.
We shall assess quantitatively the efficiency of the spherical detector in terms of
cross section values below.

But, as just stated, quadrupole modes are degenerate. More specifically, they
are 5-fold degenerate, each degenerate wavefunction corresponding to one of the
five integer values m can take between −2 and +2. Monopole modes are instead
non-degenerate. Figure 6 shows the shapes of all these modes [41] – see the
caption to the figure for further details.

Degeneracy is a key concept for the multimode capabilities of the spherical
detector. For, as explicitly shown by (46), monopole and quadrupole detector
modes are driven by one and five GW amplitudes, respectively, i.e., g(0,0)(t)
and g(2,m)(t). Therefore, if one could measure the amplitudes of these modes,
i.e., the amplitudes of the deformations displayed in Fig. 6, then a complete
deconvolution of the GW signal would be accomplished. This is a unique feature
of the spherical antenna, which is not shared by any other GW detector: it
enables the determination of all the GW amplitudes, not just a combination of
them, no matter where the signal comes from. In Sect. 5.3 below I shall give
a more detailed review of how the multimode capability can be implemented
in practice.

Cross Sections. The general definition (42) applies in this case, too. Since
cross section is a frequency dependent concept, and since quadrupole modes
are degenerate, it is clear that energies deposited in each of the five degenerate
modes of a given frequency harmonic must be added up to obtain E(ωn2) for
that mode. Such energy must be calculated by means of volume integrals – to
add up the energies of all differentials of mass throughout the solid –, the details
of which I omit here. The final result turns out to be a remarkable one [26]: cross
sections factorise in the form

σabs(ωnl) = Kl(ℵ)
GMv2t
c3

(knlanl)2 (l = 0 or 2) , (49)

where GMv2t /c
3 is a characteristic of the material of the sphere10, and (knlanl) a

dimensionless quantity associated with the {nl}-th frequency harmonic; finally,
and this is the stronger theoretical point of this expression, Kl(ℵ) is a coefficient
which is characteristic of the underlying theory of GWs, symbolically indicated
10 vt is the so called ‘transverse speed of sound’, and is related to the true speed of

sound, vs, by the formula

vt = (2 + 2σP)−1/2 vs ,

with σP the Poisson ratio of the material.
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= ±1
= 2l

m

= ±2
= 2l

m

l = m = 0 l m = 0= 2,

Fig. 6. The five quadrupole spheroidal oscillation modes of a solid elastic sphere, and
the monopole mode. Note the latter (top left) is a spherically symmetric ‘breathing’
mode, while the rest have non-symmetric shapes. Because the eigenmodes (45) are ac-
tually complex (the spherical harmonics for m 
= 0 are complex) suitable combinations
of them and their complex conjugates have been used to make plotting possible. These
shapes are shared by all corresponding harmonics, i.e., quadrupole profiles for example
are those shown no matter the harmonic number n of their frequency ωn2: simply, they
oscillate faster for higher n, but always keep the represented profile

with ℵ. For example, if the latter is General Relativity (GR) then

ℵ = GR ⇒

⎧⎨⎩
K0(ℵ) = 0 ,

K2(ℵ) = 16π2

15 ,
(50)

while if it is e.g. Brans-Dicke [17] then these expressions get slightly more com-
plicated [42,43], etc.

Sticking to GR, a few illustrative figures are in order. They are shown in
Table 1, where a material of aluminum Al5056 alloy has been chosen. It appears
that a sphere having the same fundamental frequency (ν12) as a cylinder (ν1) is
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Table 1. Compared characteristics and cross sections for a cylindrical and a spherical
GW detector of like fundamental frequencies. Note that the cylinder is assumed to be
optimally oriented, i.e., with its axis perpendicular to the GW incidence direction.

Cylinder Sphere

ν1 = 910 Hz
{

ν12 = 910 Hz
ν22 = 1747 Hz{

L = 3.0 metres
D = 0.6 metres 2R = 3.1 metres

Mc = 2.3 tons Ms = 42 tons

σ1 = 4.3×10−21 cm2 Hz
{

σ12 = 9.2×10−20 cm2 Hz
σ22 = 3.5×10−20 cm2 Hz

(Optimum orientation) (Omnidirectional)

about 20 times more massive, and this results in a significant improvement in
cross section, since it is proportional to the detector mass. A spherical detector
is therefore almost one order of magnitude more sensitive than a cylinder in the
same frequency band – obviously apart from the important fact that the sphere
has isotropic sensitivity.

But there is more to this. Table 1 also refers to the cross section of the
sphere in its second higher quadrupole harmonic frequency, ν22 – almost twice
the value of the first, ν12. It is very interesting that cross section at this second
frequency is only 2.61 times smaller than that at the first [44] while, as stressed
in Sect. 2.1, it is zero for the second mode of the cylinder. Figure 7 shows a plot
of the cross sections per unit mass of a cylinder and a sphere of like fundamental
frequencies. It graphically displays the numbers given in the table, but also
shows that, even per unit mass, the sphere is a better detector than a cylinder
– its cross section ‘curve’ stays above that of the cylinder. In particular, the
first quadrupole resonance turns out to have a cross section which is 1.17 times
that of the cylinder (per unit mass, let me stress again) [44], i.e., ∼ 17 % better.
This constitutes the quantitative assessment of the discussion in the paragraph
immediately following (48).

5.3 The Motion Sensing Problem

In order to determine the actual GW induced motions of an elastic solid a motion
sensing system must be set up. In the case of currently operating cylinders this
is done by what is technically known as resonant transducer [45]. The idea of
such device is to couple the large oscillating cylinder mass (a few tons) to a small
resonator (less than 1 kg) whose characteristic frequency is accurately tuned to
that of the cylinder. The joint dynamics of the resulting system {cylinder +
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Fig. 7. Cross section per unit mass of a cylinder and a sphere of like fundamental
frequencies, in units of Gv2

s /c3. Note the (slightly) better Fig. (17%) for the lowest
mode in the sphere, as well as the appreciable value in the second harmonic of the
latter, in sharp contrast with the null coupling of this mode in the cylinder. Third
harmonics show a considerable reduction in sensitivity

resonator} is a two-mode beat of nearby frequencies given by

ω± � ω0

(
1± 1

2
η1/2

)
, (51)

where ω0 is the frequency of either oscillator when uncoupled to the other, and
η ≡ Mresonator/Mcylinder. The key concept of this device is the resonant energy
transfer, which flows back and forth between cylinder and sensor with the period
of the beat, i.e., 2π(ηω0)−1/2. This means that, because the mass of the sensor is
very small compared to that of the cylinder, the amplitude of its oscillations is
enhanced by a factor of η−1/2 relative to those of the cylinder, whence a mechan-
ical amplification factor is obtained before the sensor oscillations are converted
to electrical signals, and further processed – see a more detailed account of these
principles in [46].

The same principles can certainly be applied to make resonant motion sensors
in a spherical antenna. In this case, however, a special bonus is there, associated
to the degeneracy of the quadrupole frequencies: because all five quadrupole
modes oscillate with the same frequency, it is possible to attach five (or more)
identical resonators, tuned to a given quadrupole frequency, at suitable positions
on the sphere surface, thus taking multiple samples of the motion of the sphere.
This makes possible to retrieve the oscillation amplitudes of the five degenerate
modes – Fig. 6 –, and thereby of the GW quadrupole amplitudes g(l,m)(t), since
both are linearly related through (46).

A single spherical antenna can thus deconvolve completely the quadrupole
GW signal, and do so with isotropic sky coverage. These characteristics are
unique to the spherical detector, and they make it a theoretically superior system
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Ω

z(t)

q(t)

M

x

Fig. 8. Schematic diagramme of the coupling between a solid sphere and a resonator,
modeled as a small mass linked to a spring attached to the surface of the sphere. The
dashed-dotted arc line on the left indicates the position of the undeformed surface of
the sphere, and the solid arc, its actual position

compared to either interferometers or Weber bars. In addition, a sphere can
naturally measure the amplitude of the non-degenerate monopole mode, as it is
conceptually simple to sense the amplitude of an isotropically breathing pattern.

The conceptual idea of a resonant sensor is shown in Fig. 8, and the equations
of motion for such a system are [47]

�
∂2u

∂t2
= μ∇2u + (λ+ μ)∇(∇·u)+

J∑
b=1

MbΩ
2
b [zb(t)− ub(t)] δ(3)(x− xb) nb + fGW(x, t) , (52a)

z̈a(t) = −Ω2
a [za(t)− ua(t)] + ξGW

a (t) , a = 1, . . . , J , (52b)

whereMa andΩa are the mass and characteristic frequency of the a-th resonator,
fGW(x, t) is the GW tide on the sphere – see (37) –, and ξGW

a (t) is the GW
induced tidal acceleration on the resonator itself, relative to the centre of the
sphere; δ(3) is the three dimensional Dirac density, i.e., point-like connections
between sphere and sensors are assumed. The mathematical detail of the analysis
of these equations is somewhat sophisticated. The interested reader will find
complete information in [47]; the rest of this section will be devoted to a brief
discussion of the main conclusions of that analysis.

First thing to stress is that (52a-b) cannot be solved analytically, they must
instead be solved by a perturbative procedure. The small perturbation parame-
ters are the ratios

ηa ≡
Ma

M
, ηa  1 , a = 1, . . . , J , (53)

where M is the total mass of the sphere. Actually, the analysis assumes that the
resonators are all identical, any deviations from this being eventually assessed by
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suitable methods [47,48]. The fundamental result links the spring deformations
to the GW amplitudes g(l,m)(t) by the following formula, expressed in terms of
Laplace transforms – noted with a caret (̂ ):

q̂a(s) = η−1/2
∑
l,m

Λ̂(lm)
a (s;Ω) ĝ(l,m)(s) , a = 1, . . . , J , (54)

where it is assumed that the frequency of the resonators Ω is tuned to either
a monopole or a quadrupole harmonic of the sphere. The transfer functions
Λ̂

(lm)
a (s;Ω) naturally depend on whether a monopole or a quadrupole mode is

selected for resonator tuning; I will quote here only the quadrupole case, as it is
the most interesting one – see again full information in [47]:

Λ̂(lm)
a (s;ωn2) = (−1)J

√
4π
5
an2

J∑
b=1

⎧⎨⎩∑
ζc �=0

1
2

[(
s2 + ω2

c+
)−1 −

(
s2 + ω2

c−
)−1
]

× v
(c)
a v

(c)∗
b

ζc

}
Y2m(nb) δl2 , (55)

where v(c)a is the c-th normalised eigenvector of the matrix P2(na·nb), associated
to its non-zero eigenvalue ζ2c , P2 is a Legendre polynomial, and na is the position
of the a-th resonator on the surface of the sphere. Finally,

ω2
a± = ω2

n2

(
1±
√

5
4π

|An2(R)| ζa η1/2
)
, a = 1, . . . , J . (56)

Equations (54)–(56) are the key to the GW signal deconvolution problem:
they show that beats occur around the tuned frequency (ωn2 in this case), and
that the resonators oscillate with amplitudes enhanced by a factor η−1/2, as
indeed expected. Note that these beats have frequencies which depend on the
positions of the resonators na, as shown by the presence of the ζa coefficient
in (56).

The deconvolution problem consists in inferring the GW amplitudes ĝ(l,m)(s)
from the readouts of the telescope q̂a(s). Thus at least 5 sensors must be attached
to the surface of the sphere if e.g. the 5 quadrupole amplitudes are looked for:
once the corresponding five q̂a(s) are measured the system (54) is solved for
ĝ(2,m)(s), that’s it.

Crucial at this point is to decide where to implant the resonators, as such
decision bears fundamentally on the simplicity, or even the possibility of solving
the posed problem. There are two major proposals in the literature for this,
and they are displayed in Fig. 9. They permit the definition of so called mode
channels, which are linear combinations of the system readouts q̂a(s) which are
directly proportional to the GW amplitudes ĝ(2,m)(s). They happen to be of the
form [47]

ŷ(m)(s) =
5 or 6∑
a=1

v(m)∗
a q̂a(s) , m = −2, . . . , 2 , (57)
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Mode  channels

TIGA PHC

Fig. 9. The TIGA and PHC resonator distributions. In the former, six sensors are
attached to the pentagonal faces of a truncated icosahedron, while in the latter there
are two sets of five quadrupole sensors, respectively tuned to the first quadrupole
frequency (squares) and to the second (triangles); there is an 11-th sensor (star) which
is tuned to a monopole frequency. The relevant common characteristic of these layouts
is that they enable the definition of mode channels – see text for details

both for TIGA and PHC. The actual result of these linear combinations is the
following:

ŷ(m)(s) = η−1/2 an2
1
2

[(
s2 + ω2

m+
)−1 −

(
s2 + ω2

m−
)−1
]
ĝ(2,m)(s) , (58)

i.e., they are convolution products of the signal and the system beats.
This formula appears to be very powerful, as it shows that suitable sensor

systems enable a single spherical detector to fully deconvolve all the GW ampli-
tudes. One should however be careful about this conclusion, for the formula also
indicates that the relevant information can only be obtained at the resonance
frequencies ωm± – in an ideal, non-dissipative system. In a real system, resonant
linewidths are never infinitely sharp, they have instead a certain breadth; this
actually makes possible the observation across wider bandwidths, provided the
amplifier noise can be kept sufficiently small – I shall briefly come to this below
in Sect. 6.

5.4 Hollow and Dual Spheres

The real merit of the just described spherical GW detector comes from its sym-
metry. A hollow sphere does of course share the symmetry properties of a solid
sphere, and one might therefore expect it to be an interesting alternative, too.
A detailed study of the performance of a hollow spherical GW detector can be
found in [49]. The added bonus of a hollow sphere is that there is one more
structural parameter one can adjust to enhance this or that property, and this
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R

a

Optical cavity

Fig. 10. Conceptual scheme of the dual sphere: the GW signal drives the facing sur-
faces between the nested spheres into oscillatory motions; when the signal frequency
falls between the resonances of the spheres, oscillations happen with phase opposition,
thereby enhancing the response of the device. Motion sensing can be accomplished e.g.
by non-resonant optical transducers

is of course the thickness of the spherical shell. It appears that cross sections at
e.g. different quadrupole harmonics have characteristic behaviours when plotted
as functions of thickness; also, one can decide to attach the motion sensors to
the inner or to the outer side of the shell, as their GW induced oscillations have
different amplitudes.

To actually build and suspend a hollow sphere in the laboratory may be a
difficult task from a technological point of view. Recently, though, a new concept
spherical detector appeared in the literature [50]: this is called dual sphere, and
consists in a solid sphere nested inside a hollow one, concentric with it and with
a narrow gap between them – Fig. 10. An incoming GW drives both spheres into
oscillation. Clearly, the inner solid sphere has a higher first (quadrupole) mode
frequency than the outer hollow one, therefore an incoming GW with a frequency
between those two will drive the oscillations of the spheres with opposite phase11,
thus enhancing the signal by a rough factor of 2.

The motion sensing in either hollow or dual spheres is conceptually analogous
to that in the solid sphere, with the added flexibility that in the hollow piece
one can choose to sense the displacements of either side of the shell. Actually,
though, it appears that non-resonant detectors seem to constitute a better choice
in dual spheres, for this enables a significant bandwidth enlargement [50].

Let me briefly discuss now, for completeness, a few essentials of GW detector
sensitivity.
11 As shown in textbooks on Mechanics, see e.g. [51], there is phase change in a response

of the oscillator to a periodic excitation as the frequency of the latter shifts from
below the natural frequency of the oscillator (Ω, say) to above it; the transition
region has a width of order Ω/Q centred at Ω, where Q is the mechanical quality
factor of the oscillator, about 107 or more in GW detectors.
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6 GW Detector Sensitivities

So far I have only discussed the theoretical basis of the workings of GW detectors,
whether interferometric or acoustic, yet have made no mention of the practical
difficulties of getting them actually working. . .

The extreme weakness of any expected GW signals arriving in the Earth [52]
is in fact a source of such truly difficult problems that it has prevented GW
detectors from sighting a real signal in the last 40 years, since the times of
J. Weber. Local detector noise has to date overwhelmed any signals possibly
hitting the antennas, and therefore the technological challenge has been for years,
and still is today, to reduce that noise to the level where it can be filtered out
with a meaningful signal to noise ratio [53].

During the last decade or so, a number of people in different countries world-
wide have managed to get important GW detection research projects funded
which constitute a major step forward in detector technology. Their goal is
to improve the sensitivity to the point where a significant event rate becomes
available to the GW astronomer. We thus find such laboratories as VIRGO (a
French-Italian collaboration), LIGO (USA alone), or LISA (a space mission,
jointly funded by NASA and ESA, the European Space Agency). In addition to
those, somewhat smaller experiments are GEO-600 (a German-British venture)
and TAMA (the Japanese project, currently making strong progress in both and
stability).

So much for interferometric antennas. But endeavours have not declined in
the acoustic detector arena, either. In fact, the five acoustic detectors of the
Weber type (NAUTILUS, EXPLORER, AURIGA, ALLEGRO and NIOBE)
constitute the only working systems in the world today. Unfortunately, though,
they are only sensitive to catastrophic events happening in our galaxy, with a
far too low occurrence rate. These detector systems are periodically upgraded,
and their sensitivity has gone up a few orders of magnitude since their origins.
As already stressed in Sect. 1, new generation spherical GW detectors are being
programmed in Brazil, Holland and Italy, and these should suddenly improve
over bars by at least one more order of magnitude.

Figure 11 contains a recent plot of GW sensitivity of various earth based
detectors, therefore in the frequency range near 1 kHz. On the other hand, LISA
will be sensitive at frequencies far away from the range plotted in Fig. 11 – see
LISA’s web site at http://sci.esa.int/home/lisa and Fig. 12 below. What
we see in ordinates in plots like the one in Fig. 11, which are standard in GW
science, is a spectral density – or, rather, its square root. It is to be understood
as follows.

Noise of whatever origin causes any detector to generate random outputs,
stochastic time series, as this is technically known. This noise competes with
any GW signals which may be present in the antenna readout, obscuring their
detection. Noise of course does not come from the sky, it rather gets added to the
GW signal at almost all the different stages of the detection process. For example,
the GW induced oscillations of a given mass compete with thermal oscillations
of that mass and its suspension systems; then there is noise in the conversion
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Fig. 11. Spectral strain sensitivities of various future generation GW detectors, in-
cluding the “dual sphere”

from mechanical or optical GW signals to electrical signals; then there is noise
introduced by the electronics in the amplifiers of the latter; and so forth. . .

In the end, the detector output is a certain physical magnitude (e.g. a volt-
age) which consists of a number of various superimposed sources of noise plus,
possibly, a GW signal converted to volts by the detector hardware. One infers
the value of the actual dimensionless GW amplitude h(t), say, from the output
voltage if one knows the precise physics of the transduction process – and this
is obviously the case in any useful instrument.

Conversely, it is also possible to back-convert all the sources of noise voltage
picked up across the various detector stages to an equivalent dimensionless “GW
noise”, which gets directly added to real GW signals, and travels through an
ideally noiseless detector. This artifact is expedient because, for a fixed antenna,
it enables a quick assessment of the detectability of a given GW signal, normally
calculated by methods of gravitation theory, by direct comparison with suitably
constructed detector characteristic curves – such as those in Fig. 11.

Let us then call x(t) any one of the readout channels of the detector, back-
converted to a GW amplitude by the above described procedure. We split this
up into a GW signal proper h(t) plus a noise term n(t):

x(t) = h(t) + n(t) . (59)

For stationary Gaussian noise, the statistical properties of n(t) are encoded
in its spectral density function, Sh(ω), which is the Fourier transform of the
autocorrelation function

R(τ) ≡ 〈x(t)x(t+ τ)〉 , Sh(ω) ≡
∫ ∞

−∞
R(τ) eiωτ dτ , (60)
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where 〈−〉 stands for ensemble average [54]. It can be shown [53] that the op-
timum filter to extract the signal h(t) from the system readout x(t) is the so
called matched filter, whose transfer function is the Fourier transform of the sig-
nal h̃(ω) divided by the spectral density Sh(ω), and the detection threshold can
be set from the integrated signal to noise ratio:

SNR =
∫ ∞

−∞

|h̃(ω)|2
Sh(ω)

dω
2π
. (61)

The GW signal h(t) is a dimensionless quantity, as it measures a perturba-
tion of the Minkowski metric, see (3). Therefore the spectral density Sh(ω) has
dimensions of time, or inverse frequency, Hz−1, according to the definitions (60).
Now, signal to noise ratio as defined by the integral (61) is made up of the contri-
butions of the ratio between the signal power |h̃(ω)|2 to the noise power Sh(ω) at
all frequencies; the idea of the graphical representation in Fig. 11 is thus to show
which is the level of noise at different frequencies by means of an rms quantity,
such as the square root of the noise spectral density is. The appropriate units
for this representation are accordingly Hz−1/2, as indicated.

Different interesting sources of GWs are being considered by other authors in
this volume, so I will not go into such matters here. It is nevertheless instructive
to present an example graph of a few signals on top of the sensitivity curves
of various detectors in order to get a picture of the actual possibilities of each
instrument, and also to grasp what are the spectral orders of magnitude of
different GW signals. One such plot is presented in Fig. 12. This is, let me insist,
the standard way to assess the detectability of the different GW sources.

7 Concluding Remarks

This article is a brief review on the nature of the interactions of GWs with test
particles and test electromagnetic fields, as they specifically happen in currently
conceived detection devices. While the fundamental principles are not new in
themselves, their application in actual systems is still in many cases subject
of research, as we have seen. A thorough understanding of these matters is
absolutely essential for an adequate interpretation of the antenna readouts, the
more so if one considers the extreme weakness of any signals reaching us from
even the most intense sources.

I have omitted any detailed discussion of the practical problems faced by
real detector building. This is a major research field in itself, of an intrinsically
sophisticated and multidisciplinary nature – involving such fundamental issues
as quantum measurement limits and techniques, or Quantum Optics [56]. But it
is of course not directly related to Astrophysics or Relativity. . . I have however
considered appropriate to summarily brief the interested reader on how detector
sensitivities are defined, and on which are the detection thresholds in current
state of the art GW detectors: this is a key issue for an astrophysicist/relativist
wishing to assess the detectability of a given GW signal, whether by existing
instruments or future planned.
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Fig. 12. Root mean square noise spectral densities, referred to GW amplitudes, for
some of the upcoming interferometric GW detectors, together with the spectral inten-
sities of various signals. The latter are estimated by numerical calculation, while the
noise is modeled on the basis of its origin and instrumental characteristics. See [55]

GW detection endeavours have been the subject of intensive research during
the last 4 decades, though the ultimate goal of sighting GW events has still not
been accomplished. While this may look like a major failure, one may not forget
that detector sensitivities have gone up by a remarkable six orders of magnitude
(in energy, three in GW amplitude) since the very first telescopes constructed
by J. Weber. Also, a look at the trend in this development indicates that we are
getting closer to the objective.

Prospects look now better than ever yet the real challenge is still there. . .
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581 83 Linköping, Sweden

Abstract. We show that any symmetric conformal N -dimensional Lorentz transfor-
mation is a superenergy tensor of a simple form. For a non-symmetric conformal Lorentz
transformation we show that the symmetric part satisfies the dominant energy condi-
tion (up to sign) and can be written as a sum of at most N superenergy tensors of
simple forms determined by its null eigenvectors. By studying relations between eigen-
vectors of the symmetric and anti-symmetric parts, a complete classification of all
conformal Lorentz transformation in any dimension is then obtained according to the
null eigenvectors of the anti-symmetric parts.

1 Introduction

We assume that we work on an N -dimensional manifold endowed with a Lorentz-
ian metric gab of signature +, −, . . . , − and that a time-orientation has been
chosen.

We say that a map tab is a null-cone preserving map if katab is null for any
null vector ka. If also tabkb is null tab is bi-preserving. We have [1]

Lemma 1. (a) tactbc = fgab ⇐⇒ ta
b is a null cone preserving map.

(b) If tactbc = fgab then f ≥ 0 for N > 2.
(c) N > 2, tactbc = fgab �= 0 ⇐⇒ f > 0 and tcatcb = fgab ⇐⇒ ta

b defines a
non-singular null-cone bi-preserving map.

(d) tactbc = 0 ⇐⇒ ta
b is a singular null cone preserving map ⇐⇒ tab = sakb

where kb is null.
(e) tactbc = tcat

c
b = 0 ⇐⇒ ta

b is a singular null-cone bi-preserving map
⇐⇒ tab = nakb where na and kb are null.

Hence, all non-singular maps preserving the null cone are automatically bi-
preserving and proportional to an N -dimensional Lorentz transformation, i.e.
they are conformal Lorentz transformations. Recall that a conformal Lorentz
transformation satisfies the relation τacτbc = fgab = τcaτ

c
b where f = 1 for

Lorentz transformations.
The superenergy tensor of a p-form Ωa1...ap

= Ω[a1...ap], 1 < p < N , is the
symmetric rank-2 tensor [2]

Tab{Ω[p]} =
(−1)p−1

2(p− 1)!
Ωaa2...apΩb

a2...ap +
(−1)N−p−1

2(N − p− 1)!
∗Ωaa2...aN−p

∗Ωba2...aN−p
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where ∗Ωa1...aN−p
is the dual of Ωa1...ap

. This can also be written without duals
as

Tab{Ω[p]} =
(−1)p−1

(p− 1)!

(
Ωaa2...apΩb

a2...ap − 1
2p
Ωa1...apΩ

a1...apgab

)
Note that the dimension N does not appear explicitly here and that this

expression is well defined for 1 < p ≤ N .
For a 1-form Ja we get Tab{J[1]} = JaJb − 1

2JcJ
cgab which is the energy-

momentum tensor of a scalar field Φ where Ja = ∇aΦ. For a 2-form Fab we have
Tab{F[2]} = −FacFbc + 1

4FcdF
cdgab which is the energy-momentum tensor of a

Maxwell field Fab.
We denote by SE2 the set of superenergy tensors of p-forms.
As any superenergy tensor Ta1...ar has the dominant property (written Ta1...ar

∈ DP):
Ta1...ar

ua1
1 ...u

ar
r ≥ 0

for any set ua1 ,..., uar of causal future-pointing vectors [3,4,2], we have as a special
case that T{Ω[p]} ∈ DP2, i.e.

Tab{Ω[p]}uavb ≥ 0

for any causal future-pointing vectors ua and va.
We will now go on to show that there is a close relation between superen-

ergy tensors and Lorentz transformations. We will first study symmetric Lorentz
transformations in which case the relation is very simple. Then we continue with
the non-symmetric case where a procedure for finding the structure in arbitrary
dimension is presented, and we provide explicit results in dimensions up to four.
We also study non-symmetric null cone preserving maps, and show they have a
symmetric part with the dominant property, and classify them according to the
null eigenvectors of its skew-symmetric part. This provides a complete classifi-
cation of all conformal Lorentz transformations as well as the singular null cone
preserving maps in any Lorentzian manifold of arbitrary dimension.

2 The Symmetric Case

A symmetric Lorentz transformation Lab is involutory: Lab = (L−1)ab, so we
now assume that τ is proportional to such a transformation.

Recall that a p-form Ωa1...ap is simple [5,6] if it is a product of p linearly
independent 1-forms ω1, . . . ,ωp, i.e. Ωa1...ap = (ω1 ∧ ... ∧ ωp)a1...ap . A p-form
Ω[p] is simple if and only if Ω ∗

[N−p]
is simple.

We denote by SS the set of superenergy tensors of simple p-forms. Observe
that SS ⊂ SE2.

Theorem 1. [1] In N dimensions, if Tab is symmetric then TacTbc = fgab ⇐⇒
(a) f = 0 : Tab = βkakb for a null kb.
(b) f �= 0 : εTab = Tab{Ω[p]} for some p ∈ {1, . . . , N}, where Tab{Ω[p]} is

the superenergy tensor of a simple p-form Ω[p] and ε = ±1. Moreover, εTaa =
(2p−N)

√
f .
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Note the equivalence and the important immediate geometrical consequence

Theorem 2. In N dimensions, if τab is symmetric then τacτbc = fgab ⇐⇒ τab
is (up to sign) a superenergy tensor of a simple form. This means that non-
singular superenergy tensors of simple forms are precisely those proportional
to involutory orthochronous Lorentz transformations. The singular ones are the
symmetric singular orthochronous null-cone bi-preserving maps.

Thus, the symmetric case is completely solved by this theorem.
Another important application of theorem 1 is the generalised algebraic

Rainich theory [1], which gives necessary and sufficient conditions on energy-
momentum tensors (or on the Ricci tensors via Einstein’s equations) to corre-
spond to a physical field, a way of determining the physics from the geometry.
The special case N = 4, p = 2 and Taa = 0 are the classical Rainich-Misner-
Wheeler conditions for electromagnetic field in general relativity.

3 The Non-symmetric Case

If a null-cone preserving map is non-symmetric (not proportional to an involutory
Lorentz transformation if non-singular), then it can be divided into its symmetric
and anti-symmetric parts:

τab ≡ Sab + Fab, Sab ≡ τ(ab), Fab ≡ τ[ab] .

Notice that, by definition, if τab is proportional to an involutory Lorentz trans-
formation then Fab = 0 and (up to sign) Sab ∈ SS (see Theorem 1). The general
characterization is (see [7,8,6] for N = 4):

Lemma 2. The symmetric and antisymmetric parts of τab satisfy

SacSb
c + FacFbc = fgab, Sc(aFb)

c = 0 (1)

if and only if τab defines a null cone bi-preserving map. Furthermore, Sab or
−Sab is in DP.

The possible number of null eigenvectors for a 2-form is: (i) if N = 2, there
are exactly two of them with nonzero eigenvalues of opposite sign; (ii) if N = 3,
there can be 0, 1 or 2 null eigenvectors; if there are 2 then both of them have
non-zero eigenvalues of opposite sign. (iii) for N > 3 and even, say N = 2n
(n ≥ 2), there can be either 1, 2, 4, . . . , 2(n − 1) = N − 2 null eigenvectors (the
only odd number in the list is 1). (iv) for N > 3 and odd, say N = 2n + 1,
there can be either 0, 1, 2, 3, . . . , 2n− 1 = N − 2 null eigenvectors (the only even
numbers in the list are 0, 2). In all cases, if there is only one null eigenvector its
eigenvalue is zero. This case includes the null 2-forms.

Lemma 3. If τab defines a null cone bi-preserving map then:
(a) every null eigenvector of its symmetric part Sab is also a null eigenvector

of its antisymmetric part Fab.
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(b) every eigenvector with non-zero eigenvalue of Fab is also a null eigenvec-
tor of Sab.

(c) In the singular case, τab = kanb, and kb and nb (which may coincide if
Fab = 0) are the null eigenvectors of both Sab and Fab.

(d) every null eigenvector ka with zero eigenvalue of Fab is either a null eigen-
vector of Sab or there is another independent null eigenvector nb with vanishing
eigenvalue of Fab such that the timelike 2-plane generated by {ka, na} contains
two eigenvectors of both Sab and Fab, one of them spacelike the other timelike,
with opposite eigenvalues.

(e) every timelike eigenvector of Sab is either an eigenvector also of Fab or
there are two null vectors which are simultaneously eigenvectors of both Sab and
Fab with non-zero eigenvalues.

(f) if Fab has a timelike eigenvector then there is a common timelike eigen-
vector for Fab and Sab.

(g) Furthermore, if Fab �= 0 then Sab,−Sab /∈ SS (for N > 2).

Thus, the maps preserving the null cone have a symmetric part which is in
DP and either in SS (if Fab = 0, see Theorem 1) or not (if Fab �= 0), in the
second case algebraically determined by the antisymmetric part of the map and
its null eigenvalues. Hence, in order to classify all these maps we only need to
know the structure of tensors in DP2 in relation with SS ⊂ DP2 and with
the null eigenvectors. We now show that all symmetric tensors in DP2 can be
written as sums of terms in SS, which means that the elements in SS can be
used to build up DP2. Furthermore, each term of SS in the sum is related in
a precise way to the null eigenvectors of the tensor in DP2. More precisely, we
have:

Theorem 3. In N dimensions, any symmetric rank-2 tensor Sab ∈ DP2 can be
written

Sab =
N∑
p=1

Tab{Ω[p]} (2)

where Tab{Ω[p]} ∈ SS are the superenergy tensors of simple p-forms Ω[p], p =
1, ..., N such that for p > 1 they have the structure Ω[p] = k1 ∧ . . . ∧ kp where
k1, . . . ,kp are appropriate null 1-forms. The number of tensors in the sum (2)
and the structure of the Ω[p] depend on the particular Sab as follows: if Sab has
N − m ≥ 1 null eigenvectors k1, . . . ,kN−m then at least Tab{Ω[N−m]}, with
Ω[N−m] = k1 ∧ . . . ∧ kN−m, must appear in the sum, and possibly terms with
p > N −m. If it has no null eigenvectors, then at least Tab{Ω[1]} appears in the
sum, and possibly terms with p > 1, and Ω[1] is the timelike eigenvector of Sab.

Recall that a future-pointing causal vector can be written as a sum of two
future-pointing null vectors in infinitely many ways. In the same manner, a
symmetric Sab ∈ DP2 can be expressed as a sum of N elements of SS in many
ways. In Theorem 3 however, we construct the representation of Sab ∈ DP2 in
a canonical way in which the simple p-forms Ω[p] are constructed from the null
eigenvectors of Sab.
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We now present the classification of the general conformally non-involutory
null-cone preserving maps. First, for given dimension N , one does the following:
(1) check the possible number of null eigenvectors of Fab, (2) use lemma 3 to
find possibilities for the null eigenvectors of Sab, (3) use theorem 3 to represent
Sab, and (4) substitute the obtained expression for Sab into lemma 2 to restrict
the possible forms of τab.

We present here the explicit results forN = 2, 3 and 4 which show the method
for general N . We also present some formulas for higher dimensions.

For N = 2 we have that both null directions �a and ka are eigenvectors of
Fab. Hence Fab = �[akb] = μηab (where ηab is the canonical volume 2-form) and
following the procedure one obtains

Corollary 1. In N = 2, the maps proportional to non-involutory Lorentz trans-
formations are given by Tab = αgab + μηab with arbitrary α and μ such that
α2 − μ2 �= 0. They are proper (resp. improper) if α2 − μ2 > 0 (resp. < 0), and
orthochronous (resp. time-reversal) if α > |μ| (resp. α < −|μ|).
Notice that in this particular case, an arbitrary 2-form μηab defines an improper
null cone bi-preserving map, and this is the only possibility in which a 2-form
can preserve the null cone.

For N = 3 the result is

Corollary 2. In N = 3, the maps proportional to non-involutory Lorentz trans-
formations are given by

Tab = βTab
{
F[2]
}

+ αgab ±
√

2αβ Fab

where α and β are arbitrary with αβ > 0 and Fab is any 2-form. These maps
leave none, one or two null directions invariant if ∗Fa is time-, light-, or space-
like, respectively.

These three mentioned cases correspond to the possibilities where Fab has none,
one or two null eigenvectors, respectively.

If N = 4 there are just two possibilities: either Fab has one or two null
eigenvectors.
(a) If Fab has one null eigenvector k, then F[2] is null, F = μk∧p with (k ·p) = 0.
Due to Lemma 3 (d) and (a) this is also the unique null eigenvector of Sab so
that use of Theorem 3 and of the equations (1) leads, after some calculations
(assuming that p is unit, see [1] for details), to either:

Tab = βTab
{
k[1]
}

+ γTab
{
q[1]
}
±
√
βγ(k ∧ p)ab , (3)

Tab = βTab
{
k[1]
}

+ αgab ±
√

2αβ(k ∧ p)ab , (4)

where q is a spacelike vector orthogonal to both k and p. Observe that in both
cases one can replace Tab

{
k[1]
}

by Tab
{
(k ∧ p)[2]

}
, because F[2] is null. Further-

more, the above expressions (3-4) are valid for arbitrary N so they are propor-
tional to Lorentz transformations in any VN .
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(b) If Fab has two null eigenvectors k and n, then

F[2] = μ1(k ∧ n)[2] + μ2
∗(k ∧ n)[2]

with μ2
1 + μ2

2 �= 0. If μ1 �= 0, from Lemma 3 (a), (b) and (d), k and n are the
two null eigenvectors of Sab so that using again first the Theorem 3, and then
the second equation in (1), one arrives at the two solutions [1]

Tab = γTab
{
(k ∧ n)[2]

}
+ αgab ±

√
2αγ [cos θ(k ∧ n) + sin θ ∗(k ∧ n)]ab , (5)

Tab = 2αTab
{
(k ∧ n)[2]

}
+ βTab

{
(k ∧ n ∧ �)[3]

}
+ αgab

±
√

2α(β + 2α) (k ∧ n)ab (6)

where θ is arbitrary.
If μ1 = 0, there also arises the possibility given by Lemma 3 (d), (f) that

Sab has a timelike eigenvector u and a spacelike one p with k ∧ n = u ∧ p. Yet
another calculation analogous to the previous ones leads then to [1]

Tab = βTab
{
u[1]
}

+ γTab
{
p[1]
}
±
√

2βγ(u ∧ p)ab . (7)

where u and p are assumed to be unit.

Corollary 3. In N = 4, the maps proportional to non-involutory Lorentz trans-
formations are given by (3-7).

These results were obtained for the restricted case in [7,8], and in general in
[6] using spinors. The case given by (6) may seem not included in the solution
presented in [6], but this is only apparent for, in fact, one can rewrite (6) as

2αTab
{
p[1]
}

+ (2α+ β)Tab
{
q[1]
}
±
√

2α(β + 2α)(k ∧ n)ab

where q ≡ ∗(k ∧ n ∧ �) and p ∧ q ≡ ∗(k ∧ n), and this last form is certainly
included in the cases appearing in [6].

The number of possibilities and the complexity of the equations increase
with N , but the reasonings and techniques are always simple and the same. The
details are omitted here but, as an illustrative example, we present the general
solution for arbitrary odd dimension N = 2n+ 1, (n ≥ 2). Let {e0, . . . ,e2n} be
an orthonormal basis. Then, the maps proportional to non-involutory Lorentz
transformations are in one of the following cases:

(1) Tab = β1Tab
{
v[1]
}

+
n∑
j=2

βjTab
{∗(e2j−1 ∧ . . . ∧ e2n)[2j−1]

}
+ αgab

±μ1(v ∧ e2)ab ±
n∑
j=2

μj(e2j−1 ∧ e2j)ab

where α, β1, . . . , βn are arbitrary, the μi are given, for all i = 1, . . . , n by

μ2
i = (β1 + . . .+ βi)(βi+1 + . . .+ βn + 2α),
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and v is a causal 1-form equal to e0 if Tab leaves no null direction invariant, and
to e0 + e1 if it leaves exactly one null direction (v) invariant.

(2) Tab = β1Tab
{
(e0 ∧ e1)[2]

}
+

n∑
j=2

βjTab
{∗(e2j−1 ∧ . . . ∧ e2n)[2j−1]

}
+ αgab

±μ1(e0 ∧ e1)ab ±
n∑
j=2

μj(e2j−1 ∧ e2j)ab

where now μ2
1 = β1(β2 + . . .+ βn + 2α), and for all j = 2, . . . , n

μ2
j = (β2 + . . .+ βj)(βj+1 + . . .+ βn + 2α− β1).

Generically, this leaves 2 null directions invariant, 3 if β1 = 0, and in general
2j + 1 null directions invariant if β1 = . . . = βj = 0.

(3) Those cases which effectively reduce to low-dimensional cases, such as
for instance

Tab = 2αTab
{
(e0 ∧ e1)[2]

}
+ βTab

{
(e2)[1]

}
+ αgab ±

√
2α(β + 2α)(e0 ∧ e1)ab

which is the analogue of (6) and has two invariant null directions. And similarly
for the appropriate generalizations of (3-4) and (7).
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Circularity Conditions on Stationary
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Abstract. In this talk we review some aspects related to circularity conditions in
Einstein-Yang-Mills theories and discuss our result that the most reasonable circularity
conditions that can be considered for the Yang-Mills field in a stationary axisymmetric
SU(2) Einstein-Yang-Mills theory imply in fact that the field is of embedded Abelian
type, or else that the metric is not asymptotically flat.

1 Introduction

The origin of Einstein-Yang-Mills (EYM) theories must be understood as a gen-
eralization of the Einstein-Maxwell (EM) theory when the gauge group U(1) is
substituted by any other group. Here we will be interested in the case where the
gauge group is SU(2)1.

In this process of generalization certain properties of electromagnetism still
remain valid while other ones are not inherited. For instance, non-Abelian EYM
theories allow for the existence of particle-like solutions, which are prohibited
in their Abelian counterpart [2]. Furthermore, some celebrated uniqueness the-
orems, proved for the EM theory, are violated by this kind of fields [3]. These
new features have given rise to an extensive study of these theories [4]. Some
solutions have been found (most of them in numerical form); in all cases the pres-
ence of symmetries has been imposed from the beginning in order to simplify
the complicated set of equations that describe these theories.

In this work we will consider the stationary axisymmetric SU(2) EYM the-
ory. In Sect. 2 we briefly review the EYM equations. Section 3 is devoted to
the concept of symmetry in gauge theories in general and, particularly, we will
concentrate on the stationary axisymmetric case. Circularity conditions will be
also introduced at this point. After that, in Sect. 4, we revise the consequences
of this circularity conditions on Abelian fields. Finally, in Sect. 5 we analyze cir-
cularity for non-Abelian fields. We introduce what we call restricted circularity
conditions and study their consequences.

2 EYM Equations

An EYM theory consists of a coupling between gravity and a gauge field, called
the Yang-Mills (YM) field. Associated with the gauge field there is a gauge group;
1 We will include for completeness some results found after the talk [1].
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in our case such a group will be SU(2). The gauge field is expressed by means of
the YM potential, A, which is an su(2)-valued 1-form, i.e., a 1-form which takes
values on the corresponding Lie algebra. If the fundamental representation of
the algebra is used, A satisfies

A† = −A , trA = 0 , (1)

where the dagger denotes conjugated transpose and tr stands for trace.
The YM field, F , corresponds to the curvature associated to the potential

F = dA+A ∧A (⇒ Fμν ≡ Aν,μ −Aμ,ν + [Aμ, Aν ]) , (2)

with [·, ·] the commutator in the algebra and ∧ the exterior product of forms.
Under a gauge transformation, U (U(x) ∈ SU(2)), these two fields change as

Aμ −→ S−1AμS + S−1S,μ , (3)
Fμν −→ S−1FμνS , (4)

while the whole theory remains physically invariant.
The field equations merge both the aspects of gravity and the gauge field.

They read

Gμν = 8πGTμν , (5)
DμF

μν = 0 ⇔ d∗F = ∗F ∧A−A ∧ ∗F , (6)

where Gμν is the Einstein tensor, Tμν is the energy-momentum tensor,

Tμν ≡
1
2π

tr
{
−FμσFνσ +

1
4
gμνFαβF

αβ

}
, (7)

∗ indicates the Hodge dual, and Dμ represents the gauge covariant derivative

Dμ ≡ ∇μ + [Aμ, ·] . (8)

We have in addition the Bianchi identity, which may be written as

Dμ
∗Fμν = 0 ⇔ dF = F ∧A−A ∧ F . (9)

3 Symmetries

In an EYM theory the non-linearity of the Einstein equations along with the
non-Abelianity of the gauge field make the whole theory rather complicated to
be considered in full generality when trying to generate solutions. Due to that,
symmetries become a necessity in order to be able to proceed.

The concept of (infinitesimal) symmetry for the metric is well known: v is
said to be a generator of an isometry (Killing vector) if

Lvg = 0 , (10)

where L stands for the Lie derivative.
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The implementation of symmetries for the gauge field requires a more general
definition: a gauge field is said to be symmetric under a generator of a symme-
try v if the action of the symmetry can be compensated by means of a gauge
transformation [5], [6]

(LvA)μ = DμW , (11)
(LvF )μν = [Fμν ,W ] , (12)

where W takes values on the Lie algebra.
In order to keep (11) and (12) invariant under gauge transformations, the

compensating element W must transform as

W → S−1WS + S−1LvS . (13)

When several symmetries are present, expressions like (11) and (12) are ful-
filled for each of them:

(Lv(n)A)μ = DμW(n) , (14)
(Lv(n)F )μν = [Fμν ,W(n)] . (15)

In this case {W(n)} cannot be arbitrary but they must satisfy

[v(m), v(n)] = cmnpv(p) , (16)
Lv(m)W(n) − Lv(n)W(m) + [W(m),W(n)]− cmnpW(p) = 0 , (17)

where cmnp are the structure constants of the algebra of spacetime symmetries.
Now we will concentrate on the stationary axisymmetric case. There two

commuting Killing vectors, ξ and η, will be present, the former being timelike
and the latter spacelike with compact periodic trajectories. Owing to the fact
that both of them commute, we are able to choose adapted coordinates, say t and
φ, such that ξ = ∂t and η = ∂φ. We will also assume that the elementary flatness
condition is satisfied so that the axis of symmetry is a regular two-dimensional
submanifold of the spacetime.

Under these assumptions, the symmetry conditions on the metric simply
imply that it does not depend explicitly on t and φ:

Lξg = Lηg = 0 ⇒ g = g(ρ, z) , (18)

{ρ, z} being the two other coordinates of the spacetime.
As for the gauge potential, (14) reads:

(LξA)μ = DμW(ξ) , (19)
(LηA)μ = DμW(η) . (20)

However, taking into account the transformation law of the compensating el-
ements, W(ξ) and W(η), (13) we may perform two successive transformations



Circularity Conditions on Stationary Axisymmetric EYM Fields 255

which bring W(ξ) and W(η) to zero. More precisely, we may first use the follow-
ing transformation

S = P
[
exp
(
−
∫ t

t0

W(ξ)(y, x)dy
)]
≡

I +
∞∑
n=1

(−1)n
∫ t

t0

dy1W(ξ)(y1, x)
∫ y1

t0

dy2W(ξ)(y2, x) . . .
∫ yn−1

t0

dynW(ξ)(yn, x) ,

(21)
where x stands for {ρ, z, φ}. It transformsW(ξ) into zero. Then the compatibility
condition (17) implies that the gauge transformed of W(η) does not depend on
t. Now we may apply another transformation

S̃ = P

[
exp

(
−
∫ φ

φ0

W
(S)
(η) (y, x̂)dy

)]
, (22)

where W (S)
(η) is the gauge transformed of W(η) under S and x̂ = {ρ, z}. It keeps

the compensating element associated to ξ equal to zero and make the one for η
vanish.

By means of this we have proved that, without loss of generality (except
for topological considerations), we can set W(ξ) = W(η) = 0 and the symmetry
condition for the gauge potential reduces to the standard definition:

LξA = LηA = 0 ⇒ A = A(ρ, z) . (23)

Hereafter we will assume this gauge choice. One should notice that some
gauge freedom still remains as we may perform gauge transformations that de-
pend on ρ and z only.

In spite of these symmetries, the field equations are still complicated. For
that reason we will impose that the two Killing vectors form two-dimensional
orthogonal surfaces, or equivalently, that the Frobenius condition is fulfilled:

ξ ∧ η ∧ dξ = ξ ∧ η ∧ dη = 0 . (24)

The Ricci-circularity theorem [7], [8] states that (24) is equivalent to

ξ ∧ η ∧R(ξ) = ξ ∧ η ∧R(η) = 0 , (25)

in a connected region of the spacetime which contains at least one point of the
axis. Here R(v)μ denotes Rμνvν .

Restrictions (24) permit one to write the metric in a quite simple form [9,10]

ds2 = −f(dt− ωdφ)2 + f−1[e2γ(dρ2 + dz2) + V 2dφ2] , (26)

where f , ω, γ, and V are functions of ρ and z.
On the other hand, the Einstein equations (5) extend restrictions (25) to the

matter energy-momentum tensor, namely, it must satisfy

ξ ∧ η ∧ T (ξ) = ξ ∧ η ∧ T (η) = 0 . (27)
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The previous conditions give rise to the following question: Are the circularity
conditions (27) a trivial consequence of the symmetry and the field equations
or do they impose any additional restriction on the gauge field? The answer
depends on the Abelianity or not of the gauge fields.

4 Abelian Case: Electromagnetism

In the Abelian case (27) is just an identity derived from the symmetry and the
equations of motion. In order to show it, let us consider the EM equations

Gμν = 8πGTμν , (28)
Fμν ;ν = 0 , (29)

where Tμν ≡ (FμσFνσ − gμνFαβFαβ/4)/4π with Fμν ≡ Aν,μ − Aμ,ν , comple-
mented by the Bianchi identity

F[μν;σ] = 0 , (30)

where [·, ·] indicates antisymmetrization.
The symmetry requirements read

Lξg = Lηg = 0 , (31)
LξA = LηA = 0 . (32)

By means of (28)-(32) it is easy to prove that

(Fμνξμην);σ = 3F[μν;σ]ξ
μην = 0 , (33)

(F[μνξσητ ]);τ =
1
2
ξ[μηνFσ]τ

;τ = 0 . (34)

If (33) and (34) are valid in a region which contains at least one point of the
axis, then one can conclude that

F (ξ, η) = ∗F (ξ, η) = 0 . (35)

Finally, using (35) on the energy-momentum tensor, it is trivial to show that

ξ ∧ η ∧ T (ξ) = ξ ∧ η ∧ T (η) = 0 . (36)

Hence, the circularity condition on the Maxwell field is just a consequence of the
Ricci-circularity of the metric, the symmetry conditions, and the field equations,
not requiring any further restriction for the gauge field.

5 Non-Abelian Case

In this case the set of equations we have to deal with is given by (5), (6), (7),
(9), (18), and (23). The circularity conditions (27) take now a more complicated
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form:

tr {e2γ(Fρφ − ωFtρ)Ftφ + V 2FρzFtz} = 0 ,
tr {e2γ(Fzφ − ωFtz)Ftφ − V 2FρzFtρ} = 0 ,
tr {e2γFtρFtφ + f2Fρz(Fzφ − ωFtz)} = 0 ,
tr {e2γFtzFtφ − f2Fρz(Fρφ − ωFtρ)} = 0 , (37)

or in a more compact form

tr {F (ξ, η)Bξ + ∗F (ξ, η)Eξ} = 0 ,
tr {F (ξ, η)Bη + ∗F (ξ, η)Eη} = 0 , (38)

where (Ev)μ ≡ Fμνvν and (Bv)μ ≡ −∗Fμνvν .
Contrary to what happens in the Abelian case, now there is no general argu-

ment to state (35) [11]. However, this seems to be the most natural assumption
one can put forward in order to satisfy (38). For this reason, we will assume it
in what follows, calling it restricted circularity conditions [1].

First of all, it should be noticed that (35) turns out to be equivalent to the
possibility of using Weyl’s coordinates for the metric:

F (ξ, η) = ∗F (ξ, η) = 0 ⇐⇒ V,ρρ + V,zz = 0 , (39)

so we may set V = ρ. This coordinate choice simplifies considerably the set of
equations:

ρ2f∇2f − ρ2(∇f)2 + f4(∇ω)2 =
−4Gftr {f2(ωFtρ − Fρφ)2 + f2(ωFtz − Fzφ)2 + ρ2(F 2

tρ + F 2
tz)} , (40)

∇ · (ρ−2f∇ω) = −8Gρ−2ftr {FtρFρφ + FtzFzφ − ω(F 2
tρ + F 2

tz)} , (41)
1√−g

∂

∂xν
(
√−gFμν) + [Aν , Fμν ] = 0 , (42)

where ∇ represents the flat tridimensional nabla operator in cylindrical coordi-
nates (ρ, z, φ). There are, in addition, two more equations for γ,ρ and γ,z which
reduce to quadratures once (40)-(42) are solved.

Of particular interest are the ρ and z components of the YM equations (42):

[At, F ρt] + [Aφ, F ρφ] = 0 , (43)
[At, F zt] + [Aφ, F zφ] = 0 . (44)

We will now work on them using (35), in order to reach our result.
In our gauge choice, the restricted circularity condition F (ξ, η) = 0 gives rise

to two possibilities:
Aφ = 0orAt = λAφ , (45)

with λ = λ(ρ, z) (Remark: The case At = Aφ = 0 is a pure-gauge one).
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5.1 Case Aφ = 0

In this case all the Fφμ components vanish and (43) and (44) reduce to

[At, Fρt] = [At, Fzt] = 0 . (46)

It clearly implies that Fρt and Fzt are proportional to At (as At cannot be zero
because it would be a trivial configuration). Then we conclude that there exists
a 2-form, σ, such that F = σAt. By using the remaining gauge freedom we may
perform a gauge transformation in order to make At proportional to T0 (a fixed
element of the Lie algebra, su(2)). Using the same name for the transformed
quantities we can write

At = atT0 , F = σT0 . (47)

But the previous relation implies that Aρ and Az are also proportional to T0:

Ftρ = Aρ,t −At,ρ + [At, Aρ] ∝ T0 ⇒ Aρ ∝ T0 ,

Ftz = Az,t −At,z + [At, Az] ∝ T0 ⇒ Az ∝ T0 . (48)

Hence, the whole gauge potential A is proportional to T0, which corresponds to
an embedded Abelian case. An analogous result holds for the case At = 0.

5.2 Case At = λAφ (λ �= 0)

For this second possibility the ρ and z components of the YM equations take
the following form:

(λfω + ρλ+ f)(λfω − ρλ+ f)[Aφ, Fφρ] = 0 , (49)
(λfω + ρλ+ f)(λfω − ρλ+ f)[Aφ, Fφz] = 0 . (50)

Three possible cases follow from that, namely,

[Aφ, Fφρ] = [Aφ, Fφz] = 0 , (51)
λfω + ρλ+ f = 0 , (52)
λfω − ρλ+ f = 0 . (53)

By means of an analysis similar to the one used in the previous section, it
is easy to prove that the first option, (51), corresponds to another embedded
Abelian configuration. As for the two other ones, they may be treated at the
same time as they are related by a reversal of the sense of rotation (t → −t,
λ → −λ, ω → −ω). For that reason we can choose one of them, our result
being valid for the other one, too. As a consequence, the form for the function
of proportionality between At and Aφ reads

λ =
f

ρ− fω . (54)
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There still remain the two other components of the YM equations. Using on
them the relations

F ρt +
1
λ
F ρφ = − f

ρe2γ
λ,ρ
λ
Aφ , (55)

F zt +
1
λ
F zφ = − f

ρe2γ
λ,z
λ
Aφ , (56)

one obtains the following single equation:

λ,ρρ + λ,zz −
ρ+ fω
ρλ

(λ,ρ2 + λ,z2) = 0 . (57)

The second-order derivatives in (57) may be substituted by using (54) and
a combination of the Einstein equations (40) and (41). The resulting equation
reads

ρf,ρ + f2ω,ρ − f = −4G
f2

λ2 (λ,ρ2 + λ,z2)tr (Aφ2) . (58)

From this equation we can see that the left-hand side has to be non-negative
(recall that tr (Aφ2) ≤ 0), but in that case the asymptotic flatness cannot hold.
To prove that one only has to introduce in (58) the asymptotic behaviour of f
and ω

f −→ 1− 2M
r

+O
(

1
r2

)
,

ω −→ −2J
r

sin2 θ +O
(

1
r2

)
, (59)

where r and θ are spherical coordinates related to ρ and z as r =
√
ρ2 + z2 and

θ = arctan(ρ/z); M and J are constant. When this is done, the leading term of
the left-hand side approaches -1, yielding a contradiction.

Thus, the only case which is not essentially Abelian has to be non-asympto-
tically flat, which makes it unacceptable. We have proved this result for an
SU(2) EYM theory. Our method depends on the fact that for SU(2) a vanishing
commutator of two quantities in the corresponding Lie algebra implies that either
one of them vanishes, or that a relation such as (45) holds. However, this is not
true for SU(N) in general, because if N is greater than two, it is possible to find
two-dimensional Abelian subalgebras in the associated Lie algebra. Therefore,
the procedure followed here cannot be generalized to SU(N) in general.

The present work has been supported in part by Dirección General de En-
señanza Superior e Investigación Cient́ıfica (Project PB98-0772). The authors
wish to thank L. Fernández-Jambrina, L. M. González-Romero and M. J. Pareja
for discussions.
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Abstract. We consider brane cosmology studying the shortest null path on the brane
for photons, and in the bulk for gravitons. We derive the differential equation for
the shortest path in the bulk for a 1+4 cosmological metric. The time cost and the
redshifts for photons and gravitons after travelling their respective path are compared.
We consider some numerical solutions of the shortest path equation, and show that
there is no shortest path in the bulk for the Randall-Sundrum vacuum brane solution,
the linear cosmological solution of Binétruy, et. al. for ω = −1, −2/3, and for some
expanding brane universes.

1 Introduction

The possibility of using extra dimensions in order to explain features related
to unified field theories has been advocated several decades ago by Kaluza and
Klein. After a die out for many years such an idea was reestablished in the context
of supergravity and string theory, especially in the latter, where extra dimensions
are required in order that the theory is rendered well defined. Meanwhile other
problems have been posed in the framework of unified theories. One of them is
the huge hierarchy between the electro-weak scale (∼ 100 GeV) and the Planck
scale (∼ 1019 TeV). One possibility to explain that difference is based on the
dynamics of supersymmetry, a very beautiful idea that has not, unfortunately,
rendered due (and ripe) issues. In the usual Kaluza-Klein, and also in the modern
proposals to deal with extra dimensions, while the 1+3 (physical) dimensions
open up to infinity, the extra dimensions are confined in a region of the size of the
Planck length, namely ∼ 10−33 cm, staying beyond experimental verification,
today or in the near future.

However, it has been recently shown that it is possible to explain the hierarchy
between the electro-weak and the Planck scale by dimensional reduction without
compactifying the extra dimensions. Moreover, the usual 1+3 dimensional Ein-
stein theory of gravity can be reproduced on the macroscopic distance scale [1]-
[5]. This is quite different from the standard approach, in which extra dimensions
open up at short distances only, whereas above a certain length scale, physics is
effectively described by 1+3 dimensional theories. Our 1+3 dimensional Universe
would be a three dimensional brane living in a higher dimensional theory, thus
displaying a certain number of additional dimensions. A further proposal to deal
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with the additional dimensions is to have them compactified in a submilimeter
scale, unifying in a natural way the electro weak and Planck scales [6,7].

The possibility of relaxing the constraints on the size of the extra dimen-
sions is very appealing. Such is the case of the Randall-Sundrum (RS) model
[1,2], where the Universe is 1+4 dimensional and the Standard Model fields are
localized on a 3-brane embedded in the 4-dimensional space. Only gravitational
fields can propagate in all four space directions. At the phenomenological length
scale the Kaluza-Klein zero-modes are responsible for the well-posed Einstein
1+3 dimensional theory of gravity and the excitations provide a correction. Due
to the “warp factor” of the brane, a mass scale around that of Planck mass cor-
responds to a TeV mass scale in the visible brane. This explains the hierarchy
problem. The cosmological consequence of this model is also under active inves-
tigation [8]-[20], as well as, alternative “asymmetrically warped” [21] and non-Z2
symmetric cosmological models [22]. All these models lead to new perspectives
in many interesting aspects such as the question of the cosmological constant.

The construction of the brane-universe can be traced to the study of E8×E8
string theory, presumably 11-dimensional, with the field theory limit studied in
[15], and where matter fields live in 10-dimensional branes at the edge of the
spacetime. The issue of higher dimensionality and its consequences for the early
universe have been often discussed in the recent literature [16]. Problems related
to higher derivative gravity [17] and on the cosmological constant problem [18]
have also been studied, besides the AdS/CFT correspondence and Cardy formula
[19].

In spite of the attractive aspects of the model, causality can be violated, as
first noticed in [23] and [24]. We have two choices facing this situation. Either we
accept the viewpoint that true causality should be defined by the null geodesics
in the 1+4 universe instead of in the 1+3 brane spacetime or we find some
mechanism to avoid such a violation on the brane. In the first case, the violation
must be neglectable in low energy experiments, otherwise, it could have been
already found. The question is whether it could be substantial in cosmology. If
the answer is positive, it might help solving the well known horizon problem
as discussed in [23] and [24]. In this paper, we consider the following problem.
Suppose there are two observers A and B on the brane. A can send series of
photons or gravitons to B in order to establish communication (see Fig. 1).
According to the brane cosmology, photons travel on the brane while gravitons
may travel in the bulk. We consider the three questions:

1. What is the shortest path for gravitons, and whether it is on the brane or in
the bulk.

2. How earlier the gravitons can arrive at B.
3. What is the difference of the redshift for photons and gravitons after they

arrive at B.
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A
B

R

Q

P

Σ

Fig. 1. Possible two paths for massless signal propagation. PQ (solid curve) is a null
geodesic on the brane Σ and PR (broken line) is a null geodesic in the bulk (modified
from [23])

2 Preliminaries

We shall consider a 5-dimensional metric describing brane cosmology. We thus
set up a 5-dimensional action of the form [9]

S(5) = − 1
2κ2

(5)

∫
d5x
√
−g̃R̃+

∫
d5x
√
−g̃Lm . (1)

The constant κ(5) is related to Planck mass by κ2
(5) = M−3

(5) . The 5-dimensional
metric is

ds2(5) = −n2(t, y)dt2 + a2(t, y)γkjdxkdxj + b2(τ, y)dy2 , (2)

where γkj represents a maximally symmetric 3-metric. The energy-momentum
appearing in the Einstein equation GAB = κ2

(5)TAB is decomposed as

TAB = T̂AB + TAB , (3)

where T̂AB is the energy-momentum tensor of the bulk matter (in the RS scenario
it comes from the bulk cosmological constant Λ, that is, T̂AB = −ΛδAB) and
TAB corresponds to the matter content on the brane located at y = 0. We are
interested in the case where the energy-momentum tensor of the brane matter
can be expressed as

TAB =
δ(y)
b

diag (−�− σ, p− σ, p− σ, p− σ, 0) . (4)

Here, σ is the brane tension in the RS scenario. The energy-density � and the
pressure p come from the ordinary matter on the brane and are independent
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of the position. Assuming the Z2-symmetry and σ = 0, the Einstein equation
permits the following exact cosmological brane solution [9] (corresponding to
Λ = 0, σ = 0, γjk = δjk)

a = a0(t)(1 + λ|y|) ,
n = n0(t)(1 + μ̃|y|) , (5)
b = b0 ,

where b0 is constant in time (a redefinition of y renders it to be 1) and n0(t) is
an arbitrary function (a suitable redefinition of t fixes it to be 1). In the above,

λ = −
κ2

(5)

6
b0� , (6)

μ̃ =
κ2

(5)

2

(
ω +

2
3

)
b0� , (7)

where κ2
(5) is related to the 5-dimensional Newton constant G(5) by κ2

(5) =
8πG(5), and the matter equation of state is p = ω� as usually.

For ω = −1 we have the inflationary case,

a0(t) = eHt, H =
κ2

(5)

6
� = const. , (8)

while for ω �= −1, the known solution for a tensionless brane is recovered,

a0 = tq̃, κ2
(5)� =

6q̃
t
, q̃ =

1
3(1 + ω)

. (9)

Remarkably, the exact solution in the RS model can also be obtained [25]. Note
that the parameters �b, pb, �Λ, and q in [25] are related to the corresponding
ones here in this paper by the relations �b = �+σ, pb = p−σ, �Λ = σ, q = q̃−1.
The solution can be written in terms of the function

a(t, y) =

{
1
2

(
1 +

κ2
(5)(σ + �)2

6�B

)
a20 +

3 C
κ2

(5)�Ba
2
0
+

+

[
1
2

(
1−

κ2
(5)(σ + �)2

6�B

)
a20 −

3 C
κ2

(5)�Ba
2
0

]
cosh(μy)−

−κ(5)(σ + �)√−6�B
a20 sinh(μ|y|)

}1/2

. (10)

where C is an integration constant, �B is the energy density in the bulk and in
this case, where we do not have matter but just a cosmological constant in the
bulk, it is given by �B = Λ, and μ is given by

μ =

√
−

2κ2
(5)

3
�B . (11)
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We now construct the remaining function

n(t, y) =
ȧ(t, y)
ȧ0(t)

. (12)

As for (33) in [25], we also have

�̇+ 3
ȧ0
a0

(�+ p) = 0 . (13)

Defining

λ =

√
�B

6κ2
(5)

+
σ2

36
, (14)

and assuming λ ≥ 0 and p = ω�, the Friedmann equation can be solved in the
case C = 0, k = 0. For λ > 0,

a0(t) = a��q̃�

{
σ

36λ2

[
cosh(κ2

(5)λt/q̃)− 1
]

+
1
6λ

sinh(κ2
(5)λt/q̃)

}q̃
. (15)

For λ = 0, which is the case of RS model,

a0(t) = a�(κ2
(5)��)

q̃

(
1

72q̃2
κ2

(5)σt
2 +

1
6q̃
t

)q̃
, (16)

where a�, �� are constant (the origin of time being chosen so that a0(0) = 0).

3 The Shortest Cut and the Redshift

3.1 Equation for the Shortest Cut

We consider the generic metric (2) for b = 1. Consider two points, rA and rB
on the brane. In general, there are more than one null geodesic connecting rA
to rB in the 1+4 spacetime. The trajectories of photons must be on the brane
and those of gravitons may be outside as assumed here. We consider the shortest
path for both photons and gravitons. Since the 3-metric is spherically symmetric,
we can omit the angular part and just consider the problem for

ds23 = −n2(t, y)dt2 + a2(t, y)f2(r)dr2 + dy2 . (17)

The photon path is on the brane (n(t, 0) = 1), therefore

−dt2 + a20(t)f
2(r)dr2 = 0 , (18)

which can be immediately integrated as∫ r

rA

f(r′)dr′ =
∫ t

tA

dt′

a0(t′)
. (19)
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The graviton path is defined in terms of the geodesic equation

−n2(t, y)dt2 + a2(t, y)f2(r)dr2 + dy2 = 0 . (20)

We suppose that the path is parameterized by y = y(t). Thus the relation
r = r(t) is obtained by∫ r

rA

f(r′)dr′ =
∫ t

tA

√
n2(t, y)− ẏ2(t)
a(t, y)

dt . (21)

We are looking for the path for which tB reaches its minimum when r = rB . For
this purpose, we consider the general case∫ rB

rA

f(r′)dr′ =
∫ tB

tA

L[y(t), ẏ(t); t]dt . (22)

For an adjacent path y = y(t) + δy(t), we have∫ rB

rA

f(r′)dr′ =
∫ tB+δtB

tA

L[y(t) + δy(t), ẏ(t) + δẏ(t); t]dt ; (23)

therefore, we find the usual condition

−δtBL[y(tB), ẏ(tB); tB ] = δ
∫ tB

tA

L[y(t), ẏ(t); t]dt . (24)

The problem is transformed into the Euler-Lagrange problem

δ

∫ tB

tA

L[y(t), ẏ(t); t]dt = 0 . (25)

In our case,

L[y(t), ẏ(t); t] =

√
n2(t, y)− ẏ2(t)
a(t, y)

, (26)

and we have

∂L
∂y

= −a−2a′(n2 − ẏ2)1/2 + a−1(n2 − ẏ2)−1/2nn′

∂L
∂ẏ

= −a−1(n2 − ẏ2)−1/2ẏ . (27)

The Euler-Lagrange equation thus reads

−ÿ +
(
ȧ

a
+
ṅ

n

)
ẏ +
(

2n′

n
− a

′

a

)
ẏ2 − ȧ

an2 ẏ
3+(

a′

a
n2 − nn′

)
= 0 . (28)
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From this equation we can see that the shortest path is on the brane only when

a′

a
n2 − nn′ = 0 , (29)

i.e.
∂

∂y

(a
n

)
= 0 . (30)

Further, if there exists a solution, when y reaches its maximum, where ẏ = 0
and ÿ < 0, we have

−ÿ +
(
a′

a
n2 − nn′

)
= 0 . (31)

Thus, a′a−1n2 − nn′, i.e. ∂y(an−1) must be negative at this point.
Notice that we consider all the geodesics between rA and rB in equation

(28), but we are going to restrict our attention and classify as shortcuts only
those paths which begin on the brane y(tA) = 0, go into the bulk (otherwise,
they would follow photon geodesic) and return to the brane.

The equation is a very difficult nonlinear ordinary differential equation. There
is no guarantee for the existence of the required solutions. In order to obtain a
solution with both two ends on the brane, we can make the Fourier expansion

y(t) =
∞∑
l=1

yl sin
lπ

tgB − tA
(t− tA) , (32)

a(t, y) = A(y) +
∞∑
l=1

[
asl (y) sin

lπ

tgB − tA
(t− tA)+

acl (y) cos
lπ

tgB − tA
(t− tA)

]
, (33)

n(t, y) = N(y) +
∞∑
l=1

[
nsl (y) sin

lπ

tgB − tA
(t− tA)+

ncl (y) cos
lπ

tgB − tA
(t− tA)

]
, (34)

and then substitute back into the differential equation to obtain the coefficients
yl. Here tgB is the time when the graviton arrives at rB , which is different
from the time tγB when the photon arrives at rB . It should be determined self-
consistently by the equation∫ rB

rA

f(r′)dr′ =
∫ tgB

tA

√
n2(t, y)− ẏ2(t)
a(t, y)

dt , (35)

once the solution is obtained.
If we want to find the path for a graviton so that it can reach the farthest

within a given time interval [tA, tB ], we can also use the Euler-Lagrange equation.
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Then the length difference between geodesics for photons and gravitons within
a given time interval can be evaluated∫ rg

rA

f(r′)dr′ =
∫ tB

tA

√
n2(t, y)− ẏ2(t)
a(t, y)

dt , (36)

∫ rγ

rA

f(r′)dr′ =
∫ tB

tA

dt′

a0(t′)
. (37)

3.2 Photon and Graviton Redshift

In general, if A sends out massless signals at xμA and xμA+dxμA, these signals will
reach B at xμB and xμB + dxμB . The relation of xμA, xμA + dxμA and xμB , xμB + dxμB
can be obtained by solving the geodesic equation. Then the redshift of the signal
is [26]

νB
νA

=

√
g00(xB)
g00(xA)

g0μ(xA)dxμA
g0ν(xB)dxνB

=

√
g00(xA)
g00(xB)

dx0
A

dx0
B

. (38)

For a static metric such as the Schwarzschild case, it can be shown that dx0
A =

dx0
B , therefore,

νB
νA

=

√
g00(xA)
g00(xB)

. (39)

For the time-dependent RW metric we have

dx0
A

dx0
B

=
R(x0

A)
R(x0

B)
, (40)

in which case the redshift is given by

νB
νA

=
R(x0

A)
R(x0

B)
. (41)

Thus, in the geometric-optics limit, the redshifts in the two cases can be system-
atically discussed.

Here, we consider that another graviton starts travelling from rA at a later
time tA+ δtA. Its shortest path is in general different from the previous one. Let
us denote it as y∗ = y∗(t). Then the time when it arrives at rB will be a later
time tgB + δtgB

∫ rB

rA

f(r′)dr′ =
∫ tgB+δtgB

tA+δtA

√
n2(t, y∗)− ẏ∗2(t)

a(t, y∗)
dt . (42)

Therefore we have the equality

∫ tgB

tA

√
n2(t, y)− ẏ2(t)
a(t, y)

dt =
∫ tgB+δtgB

tA+δtA

√
n2(t, y∗)− ẏ∗2(t)

a(t, y∗)
dt . (43)
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For infinitesimal dtA and dtB , we have

dtB

(√
n2(t, y)− ẏ2(t)
a(t, y)

)∣∣∣∣∣
B

= dtA

(√
n2(t, y)− ẏ2(t)
a(t, y)

)∣∣∣∣∣
A

. (44)

Thus, the graviton redshift is given by

νgB
νgA

=
a0(tA)
a0(tB)

√
1− ẏ2(tB)
1− ẏ2(tA)

, (45)

while for the photon we have

νgB
νgA

=
a0(tA)
a0(tB)

. (46)

4 Examples

4.1 RS Vacuum Solution

In this case [1] [2]
n(y, t) = a(y, t) = e−k|y| . (47)

(28) turns out to be
ÿ + kẏ2 = 0 . (48)

It has two possible solutions, one is y = yA = 0, and the other is y = y0 +
k−1 ln(t − t0). The second solution does not meet our requirement because it
will not end on the brane. So the shortest path must be on the brane. This
agrees with the conclusion in [23].

4.2 The Linear Cosmological Solution

We first consider the case ω = −2/3 so that from (7) μ̃ = 0, a(t, y) = t − y,
λ = −1/t. The equation is

−(t− y)ÿ + ẏ + ẏ2 − ẏ3 − 1 = 0 . (49)

Let t− y = u, then
uü+ u̇3 − 2u̇2 = 0 , (50)

or
1

2u̇2 − u̇3

d
dt
u̇2 =

2u̇
u
. (51)

Therefore, ∫
du̇

2u̇− u̇2 =
∫

du
u
, (52)

u̇

2− u̇ = cu2 . (53)
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We can obtain the solution (t0 and c are two integration constants)

y = t0 ±
√

(t− t0)2 +
1
c
. (54)

It is obvious that this path can not end on the brane either. Furthermore, we
consider the case ω = −1, λ = μ̃ = const. , a0(t) = eHt. So ∂y(a/n) = 0.
Therefore the shortest path is on the brane.

4.3 The General Linear Cosmological Solution

Consider the case ω �= −1 [9]

a0(t) = tq̃ , λ = − q̃
t
, μ̃ = w

q̃

t
, w = 2 + 3ω ; (55)

a(t, y) = tq̃ − q̃tq̃−1y , n(t, y) = 1 +
q̃ω

t
y ; (56)

ȧ(t, y) = q̃tq̃−1 − q̃(q̃ − 1)tq̃−2y , a′(t, y) = −q̃tq̃−1 (57)
ṅ(t, y) = −q̃ωt−2y , n′(t, y) = q̃ωt−1 . (58)

Letting y = tf(t) in (28), we get a nonlinear differential equation

−[1 + (2q̃ω − q̃)f + (q̃2ω2 − 2q̃2ω2)f2 − q̃3ω2f3](t2f̈ + 2tḟ)+
[q̃ + (2ωq̃2 − q̃2 + q̃ − q̃ω)f + (q̃2ω − q̃2ω2 − 2ωq̃3 + 2ωq̃2)f2+
(2q̃3ω2 − q̃4ω2)f3](tḟ + f) + [2q̃ω − q̃) + q̃3ω2f2](tḟ + f)2−

[q̃ − q̃(q̃ − 1)f ](tḟ + f)3 + [(−q̃ − q̃ω) + (q̃2 − 4q̃2 − 3q̃2ω2)f+
(3q̃3ω − 6q̃3ω2 − 3q̃3ω3)f2 + (−2q̃4ω3 + 3q̃4 − q̃4ω4)f3+

(q̃5ω3 − q̃5ω4)f4] = 0 . (59)

The analysis of such a differential equation is beyond our capability. We leave
it as it stands and pass to a discussion of some simple cases where numerical
analysis can be performed.

The case considered by Binétruy et al. [25] is that of a 3-brane universe in
the 5-dimensional spacetime with a cosmological constant. For an equation of
state p = ω� they found explicit solutions which we use in order to study the
question of the existence of shortcuts. The solutions are very involved, and we
first disentangle the equations using a MAPLE program, and further on numer-
ically solve the differential equations. We shall consider the matter dominated
(ω = 0) and radiation dominated (ω = 1/3) cases.

The solution of the gravity equations (10) with C = 0 reads [25]

a(t, y) =√√√√1
2

(
1 +

κ2
(5)�

2
b

6�B

)
+

1
2

(
1−

κ2
(5)�

2
b

6�B

)
cosh(μy)− κ(5)�b√−6�B

sinh(μ|y|) a0(t) ,

n(t, y) =
ȧ(t, y)
ȧ0(t)

, (60)

where a0 is given by (16) with σ equal to the intrinsic tension of the brane �Λ.
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1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
x=t/t0

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
z(

x)
=

μ*
y(

x)

Solution z(x) for ω=0
[ z(1)=π/10 ]

v(1)=−10
−0.3

v(1)=−10
−0.15

v(1)=−10
0

Fig. 2. Diagram for y(1) ∼ 0.3 �P

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
x=t/t0

−3

−2.5

−2

−1.5

−1

−0.5

0

z(
x)

=
μ*

y(
x)

Solution z(x) for ω=0
[ z(1)=0 ]

v(1)=−10
−0.30

v(1)=−10
−0.15

v(1)=−10
0

Fig. 3. The same diagram as before, with y beginning at the brane
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1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
x=t/t0

−1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

z(
x)

=
μ*

y(
x)

Solution z(x) for ω=0
[ z(1)=0 ]

v(1)=10
7.0

v(1)=10
7.5

v(1)=10
8.0

Fig. 4. Same as before, with positive initial velocity

1 2 3 4 5 6 7 8 9 10
x=MP*t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

z(
x)

=
μ*

y(
x)

Solution z(x) for ω=1/3
[ z(1)=π/10 ]

v(1)=10
−1.00

v(1)=10
−0.90

v(1)=10
−0.80

v(1)=10
−0.77

Fig. 5. Diagram for y(1) ∼ 0.3 �P in the radiation dominated case. Notice the plateau
followed by the case of lowest initial velocity
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1 2 3 4 5 6 7 8 9 10
x=MP*t

0

0.1

0.2

0.3

0.4

0.5

z(
x)

=
μ*

y(
x)

Solution z(x) for ω=1/3
[ z(1)=0 ]

v(1)=10
−1.00

v(1)=10
−0.85

v(1)=10
−0.78

v(1)=10
−0.76

Fig. 6. Same as before, with vanishing initial position with respect to the brane

In addition, �b and �B are the matter densities on the brane and on the
bulk respectively. We have to choose these constants, which we do according to
the course we are using to discuss the possibilities of shortcuts. We choose the
parameters according to the discussion in Binétruy et al. [9]

�b = �Λ + � , (61)

where � stands for the ordinary energy density in cosmology given by

� = ��(a0/a�)−q , q = 3(1 + ω) = q̃−1 . (62)

The intrinsic tension of the brane, �Λ, has to be identified with Newton’s
constant in order to recover the standard cosmology, that is

8πG =
κ4

(5)�Λ

6
, (63)

when � �Λ.
Furthermore, we follow Randall and Sundrum and relate the bulk energy

density �B and the cosmological constant density �Λ by

�B = −
κ2

(5)�
2
Λ

6
. (64)

At this point all constants are defined in terms of the Planck mass, and our
discussion of the evolution of gravity signs can be established.
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1 2 3 4 5 6 7 8 9 10
x=MP*t

−0.30

−0.25

−0.20

−0.15

−0.10

−0.05

0.00

z(
x)

=
μ*

y(
x)

Solution z(x) for ω=1/3
[ z(1)=0 ]

v(1)=−10
v(1)=−10

0.5

v(1)=−10
0

Fig. 7. Same as before, with negative initial velocity

For the matter dominated case, ω = 0, we experimented using different initial
conditions. In general, we prefer to start with y �= 0 in order to avoid any spurious
solution in the differential equation, which is rather singular. We thus suppose
that y starts at the order of the Planck length. Figures 2–4 show some results. We
have chosen to plot the adimensional function z(x) = μy(x), where μ corresponds
to twice Planck mass units MP and x = t/t0, being t0 the present age of the
universe.

Each graph contains a set of curves corresponding to three typical veloc-
ities, whose values are shown in the legend of each graph, producing similar
behaviours. In Figs. 2–3 we use negative initial velocities and, independently of
the chosen initial point y, the curve decays and escapes never returning to the
same brane. In the case of positive initial velocities, Fig. 4 shows three curves
from which we can notice that the greater the initial velocity is, the further away
from the brane the object will travel.

Summarizing, these graphs show that no path comes back to the brane after
splitting off further inside the bulk. After the split, some paths go off quickly,
while others remain almost parallel to the brane for an indefinite time.

We thus believe, based on these results, that the shortest path is inside
the brane, being the one followed by light. However, there is certainly room
for further paths due to the extremely complicated character of the differential
equation involved in the problem. We tried to further investigate whether new
structures could arise in such differential equations, but we failed in finding them.
The fact is that no shortcut has been found.
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In the radiation dominated era equations complicate further. In this case so-
lutions are shown in Figs. 5–7. Again, we have plotted the adimensional function
z(x), where x =MP t in this case.

Figures 5–6 show a plateau behavior for low positive initial velocities; how-
ever, there is a threshold velocity for which the curve decouples and escapes to
infinity. Figure 7 shows curves for three negative initial velocities. Again, the
wave tries to follow the brane from a distance depending on the initial velocity
value as we had seen in the matter dominated case.

Thus, in the radiation dominated era, ω = 1/3, many solutions tend to
maintain not far from the original bulk, but still never returning. Their meaning
is not known, and again, no shortcut has been found.

We thus arrive at the conclusion that the present cosmology is still simple, be-
ing included in the large class of cosmologies with no shortcuts. Our investigation
must now be headed towards cosmologies displaying genuinely new structures,
such as black holes in the bulk [21,20].
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São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Cient́ıfico e
Tecnológico (CNPq), Brazil, and NNSF of China.

References

1. L. Randall, R. Sundrum: Phys. Rev. Lett. 83, 3370 (1999)
2. L. Randall, R. Sundrum: Phys. Rev. Lett. 83, 4690 (1999)
3. J. Garriga, T. Tanaka: Phys. Rev. Lett. 84, 2778 (2000)
4. R. Gregory, V.A. Rubakov, S.M. Sibiryakov: Phys. Rev. Lett. 84, 5928 (2000)
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Weak Energy Condition Violation
and Superluminal Travel

Francisco Lobo and Paulo Crawford

Centro de Astronomia e Astrof́ısica da Universidade de Lisboa
Campo Grande, Ed. C8 1749-016 Lisboa, Portugal

Abstract. Recent solutions to the Einstein Field Equations involving negative energy
densities, i.e., matter violating the weak-energy-condition, have been obtained, namely
traversable wormholes, the Alcubierre warp drive and the Krasnikov tube. These so-
lutions are related to superluminal travel, although locally the speed of light is not
surpassed. It is difficult to define faster-than-light travel in generic space-times, and
one can construct metrics which apparently allow superluminal travel, but are in fact
flat Minkowski space-times. Therefore, to avoid these difficulties it is important to
provide an appropriate definition of superluminal travel.

We investigate these problems and the relationship between weak-energy-condition
violation and superluminal travel.

1 Introduction

Much interest has been revived in superluminal travel in the last few years.
Despite the term superluminal, it is not possible to travel faster than the speed
of light, locally. The point to note is that one can make a round trip, between two
points separated by a distance D, in an arbitrarily short time as measured by
an observer that remained at rest at the starting point, by varying one’s speed
or by changing the distance one is to cover.

Apart from wormholes [1], [2], two spacetimes which allow superluminal
travel are the Alcubierre warp drive [3] and the solution known as the Krasnikov
tube [4], [5]. These spacetimes suffer from a severe drawback, as they require
negative energy densities or exotic matter, i.e., they violate the weak energy
condition (WEC). In fact, they violate all known energy conditions and aver-
aged energy conditions, which are fundamental to the singularity theorems and
theorems of classical black hole thermodynamics [2]. Although classical forms
of matter obey these energy conditions, it is a well-known fact that they are
violated by certain quantum fields.

One is liable to ask if it is possible to have superluminal travel without the
violation of the WEC. But it is fundamental, first, to provide an adequate def-
inition of superluminal travel, which is no trivial matter [6,7]. A plausible and
general idea is that the modification of the metric would allow the propaga-
tion of signals between two spacetime points, that otherwise would be causally
disconnected.

The aim of this work is to investigate whether it is possible to have su-
perluminal travel, without the violation of the WEC. For self-consistency and

L. Fernández-Jambrina, L.M. González-Romero (Eds.): LNP 617, pp. 277–291, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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self-completeness, we present in this article an overview of the basics of the
above-mentioned solutions and the analysis of an important theorem produced
by Ken Olum [8]. We also briefly outline a new form of constraint, designated by
the Quantum Inequality, deduced from quantum field theory by Ford and Ro-
man [9]. The present work serves as a bridge to ongoing research on spacetimes
which generate closed timelike curves.

2 Warp Drive Basics

Within the framework of general relativity, it is possible to warp spacetime in a
small bubblelike region, in such a way that the bubble may attain arbitrarily large
velocities. Inspired in the inflationary phase of the early Universe, the enormous
speed of separation arises from the expansion of spacetime itself. The model
for hyperfast travel is to create a local distortion of spacetime, producing an
expansion behind the bubble, and an opposite contraction ahead of it.

Consider a bubble moving along the Oz axis with velocity, v. Therefore, the
Alcubierre spacetime metric, in cylindrical coordinates, is given by (with the
notation G = c = 1):

ds2 = −dt2 + d�2 + �2dφ2 + (dz − vfdt)2 (1)

where:

v(t) =
dz0(t)

dt

r(t) =
[
�2 + (z − z0)2

]1/2
and the form function, f(r), is given by [3]:

f(r) =
tanh(σ(r +R))− tanh(σ(r −R))

2 tanh(σR)

in which R > 0 and σ > 0 are two arbitrary parameters. R is the radius of the
bubble, and σ can be interpreted as being inversely proportional to the bubble
wall thickness.

Notice that for large σ, the form function rapidly approaches a top hat func-
tion:

lim
σ→∞ f(r) =

{
1, if r ∈ [−R,R] ,
0, otherwise.

2.1 The Expansion of the Volume Elements

The expansion of the volume elements is given by:

θ = v
z − z0
r

df(r)
dr

(2)
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Fig. 1. The expansion of the volume elements. These are expanding behind the space-
ship, and contracting in front of it

Consider a spaceship immersed within the bubble. The center of the pertur-
bation corresponds to the spaceship’s position, z0(t). The volume elements are
expanding behind the spaceship, and contracting in front of it. See Fig. 1.

Note that the spaceship moves along a timelike curve, regardless of the value
of v(t). To verify this statement we simply substitute z = z0(t) in the metric,
(1), which reduces to:

dτ = dt (3)

From which we conclude that the proper time equals the coordinate time, there-
fore the spaceship suffers no time dilation effects during its motion. It is also not
difficult to prove that the spaceship moves along a geodesic.

2.2 Superluminal Travel in the Warp Drive

To demonstrate that it is possible to travel to a distant point and back in an ar-
bitrary short time interval, let us consider two distant stars, A and B, separated
by a distance D in flat spacetime. Suppose that, at the instant t0, a spaceship
initiates its movement using the engines, moving away from A with a velocity
v < 1. It comes to rest at a distance d from A. For simplicity, assume that
R d D.

It is at this instant that the perturbation of spacetime appears, centered
around the spaceship’s position. The perturbation pushes the spaceship away
from A, rapidly attaining a constant acceleration, a. Half-way between A and
B, the perturbation is modified, so that the acceleration rapidly varies from a
to −a. The spaceship finally comes to rest at a distance, d, from B, in which
the perturbation disappears. It then moves to B at a constant velocity in flat
spacetime. The return trip to A is analogous.
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If the variations of the acceleration are extremely rapid, the total coordinate
time, T , in a one-way trip will be:

T = 2

(
d

v
+

√
D − 2d
a

)

The proper time of the stars are equal to the coordinate time, because both are
immersed in flat spacetime. The proper time measured by observers within the
spaceship is given by:

τ = 2

(
d

γv
+

√
D − 2d
a

)
with γ = (1 − v2)−1/2. The time dilation only appears in the absence of the
perturbation, in which the spaceship is moving with a velocity v, using only its
engines in flat spacetime.

Using R d D, we can then obtain the following approximation:

τ ≈ T ≈ 2

√
D

a

We verify that T can be made arbitrarily short, increasing the value of a. The
spaceship may travel faster than the speed of light. However, it moves along a
spacetime temporal trajectory, contained within its light cone, for light suffers
the same distortion of spacetime [3].

2.3 The Violation of the WEC

Given a stress energy tensor Tμν , and a timelike vector Uμ, the WEC states:

TμνU
μUν ≥ 0 (4)

This condition is equivalent to the assumption that any timelike observer mea-
sures a local positive energy density.

We verify that for the warp drive metric, the WEC is violated:

TμνU
μUν = − 1

32π
v2�2

r2

(
df
dr

)2

< 0 (5)

It is also possible to show that the dominant (DEC) and the strong energy
condition (SEC) are also violated. In Fig. 2 we verify that the distribution of
the negative energy density is concentrated in a toroidal region perpendicular to
the direction of travel.

2.4 Interesting Aspects of the Alcubierre Spacetime

The Krasnikov Analysis: Krasnikov discovered a fascinating aspect of the
warp drive, in which an observer on a spaceship cannot create nor control on
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Fig. 2. The negative energy density for a longitudinal cross section of the Alcubierre
bubble. The energy density is distributed in a toroidal region perpendicular to the
direction of travel. We have considered the following values: v = 2, σ = 2 and R = 8

demand an Alcubierre bubble, with v > c, around the ship [4]. It is easy to
understand this, as an observer at the origin (with t = 0) cannot alter events
outside of his future light cone, |r| ≤ t, with r = (�2 + z2)1/2. Applied to the
warp drive, points on the outside front edge of the bubble are always spacelike
separated from the centre of the bubble.

The analysis is simplified in the proper reference frame of an observer at the
centre of the bubble. Using a transformation, z′ = z − z0(t), the metric is given
by:

ds2 = −dt2 + d�2 + �2dφ2 + (dz′ + (1− f)vdt)2 (6)

Consider a photon emitted along the +Oz axis (with ds2 = d� = 0):

dz′

dt
= 1− (1− f)v (7)

Initially, the photon has dz′/dt = 1 (because f = 1 in the interior of the
bubble). However, at some point z′ = z′

c, with f = 1 − 1
v , we have dz′/dt = 0

[5]. Once photons reach z′
c, they remain at rest relative to the bubble and are

simply carried along with it. This behaviour is reminiscent of an event horizon.

Reminiscence of an Event Horizon: The appearance of an event horizon
becomes evident in the 2-dimensional model of the Alcubierre space-time, with
� = 0 [10,11,12]. The axis of symmetry coincides with the line element of the
spaceship.

The metric, (1), reduces to:

ds2 = −(1− v2f2)dt2 − 2vfdzdt+ dz2 (8)
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For simplicity, we consider the velocity of the bubble constant, v(t) = vb.
With � = 0, we have r = [(z − vbt)2]1/2. If z > vbt, we consider the following
transformation: r = (z − vbt). Note that the metric components of (8) only
depend on r, which may be adopted as a coordinate.

Using the transformation, dz = dr + vbdt, the metric, (8) is given by:

ds2 = −A(r)
[
dt− vb(1− f(r))

A(r)
dr
]2

+
dr2

A(r)
(9)

The function A(r), designated by the Hiscock function, is given by:

A(r) = 1− v2b(1− f(r))2 (10)

It is possible to represent the metric, (9), in a diagonal form, using a new
time coordinate:

dτ = dt− vb(1− f(r))
A(r)

dr (11)

with which (9) reduces to:

ds2 = −A(r)dτ2 +
dr2

A(r)
(12)

This form of the metric is manifestly static. The τ coordinate has an imme-
diate interpretation in terms of an observer on board of a spaceship: τ is the
proper time of the observer, because A(r) → 1 in the limit r → 0.

We verify that the coordinate system is valid for any value of r, if vb < 1. If
vb > 1, we have a coordinate singularity and an event horizon at the point r0 in
which f(r0) = 1− 1/vb and A(r0) = 0.

3 The 2-Dimensional Krasnikov Solution

The Krasnikov metric has the interesting property that although the time for a
one-way trip to a distant destination cannot be shortened, the time for a round
trip, as measured by clocks at the starting point (e.g. Earth), can be made
arbitrarily short, as will be demonstrated below.

The 2-dimensional metric is given by:

ds2 = −(dt− dx)(dt+ k(t, x)dx) (13)

where:
k(t, x) = 1− (2− δ)θε(t− x) [θε(x)− θε(x+ ε−D)] (14)

in which δ and ε are arbitrarily small positive parameters. θε denotes a smooth
monotone function:

θε(ξ) =
{

1, if ξ > ε,
0, if ξ < 0.
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There are three distinct regions in the Krasnikov two-dimensional spacetime,
which we shall summarize in the following manner.

The Outer Region: The outer region is given by the following set:

{x < 0} ∪ {x > D} ∪ {x > t} (15)

The metric is flat, k = 1, and reduces to the Minkowski spacetime. Future
light cones are generated by the vectors:{

rO = ∂t + ∂x
lO = ∂t − ∂x .

The Inner Region: The inner region is given by the following set:

{x < t− ε} ∩ {ε < x < D − ε} (16)

This region is also flat, k = δ − 1, but the light cones are more open, being
generated by the following vectors:{

rI = ∂t + ∂x
lI = −(1− δ)∂t − ∂x .

The Transition Region: The transition region is a narrow curved strip in
spacetime, with width ∼ ε. Two spatial boundaries exist between the inner and
outer regions. The first lies between x = 0 and x = ε, for t > 0. The second lies
between x = D − ε and x = D, for t > D. It is possible to view this metric as
being produced by the crew of a spaceship, departing from point A (x = 0), at
t = 0, travelling along the x-axis to point B (x = D) at a speed, for simplicity,
infinitesimally close to the speed of light, therefore arriving at B with t ≈ D.

The metric is modified by changing k from 1 to δ − 1 along the x-axis, in
between x = 0 and x = D, leaving a transition region of width ∼ ε at each end
for continuity. But, as the boundary of the forward light cone of the spaceship
at t = 0 is |x| = t, it is not possible for the crew to modify the metric at an
arbitrary point x before t = x. This fact accounts for the factor θε(t− x) in the
metric, ensuring a transition region in time between the inner and outer region,
with a duration of ∼ ε, lying along the wordline of the spaceship, x ≈ t.

3.1 Superluminal Travel Within the Krasnikov Tube

The properties of the modified metric with δ−1 ≤ k ≤ 1 can be easily seen from
the factored form of ds2 = 0. The two branches of the forward light cone in the
(t, x) plane are given by dx/dt = 1 and dx/dt = −k.

The inner region, with k = δ−1, is flat because the metric, (13), may be cast
into the Minkowski form, applying the following coordinate transformations:

dt′ = dt+
(
δ

2
− 1
)

dx (17)
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dx′ =
(
δ

2

)
dx (18)

The transformation is singular at δ = 0, i.e., k = −1. Note that the left branch
of the region is given by dx′/dt′ = −1.

From the above equations, one may easily deduce the following expression:

dt
dt′

= 1 +
(

2− δ
δ

)
dx′

dt′
. (19)

For an observer moving along the positive x′ and x directions, with dx′/dt′ < 1,
we have dt′ > 0 and consequently dt > 0, if 0 < δ ≤ 2. However, if the observer is
moving sufficiently close to the left branch of the light cone, given by dx′/dt′ =
−1, (19) provides us with dt/dt′ < 0, for δ < 1. Therefore dt < 0, the observer
traverses backward in time, as measured by observers in the outer region, with
k = 1.

The superluminal travel analysis is as follows. Imagine a spaceship leaving
star A and arriving at star B, at the instant t ≈ D. The crew of the spaceship
modify the metric, so that k ≈ −1, for simplicity, along the trajectory.

Now suppose the spaceship returns to star A, travelling with a velocity arbi-
trarily close to the speed of light, i.e., dx′/dt′ ≈ −1. Therefore, from (17)-(18),
one obtains the following relation:

vreturn =
dx
dt
≈ −1

k
=

1
1− δ ≈ 1 (20)

and dt < 0, for dx < 0.
The return trip from star B to A is done in an interval of Δtreturn =

−D/vreturn = D/(δ − 1). The total interval of time, measured at A, is given
by TA = D +Δtreturn = Dδ. For simplicity, consider ε negligible.

Superluminal travel is implicit, because |Δtreturn| < D, if δ > 0, i.e., we have
a spatial spacetime interval between A and B. Note that TA is always positive,
but may attain a value arbitrarily close to zero, for an appropriate choice of δ.

3.2 The 4-Dimensional Generalization

The metric in the 4-dimensional spacetime, written in cylindrical coordinates, is
given by [5]:

ds2 = −dt2 + (1− k(t, x, �))dxdt+ k(t, x, �)dx2 + d�2 + �2dφ2 (21)

with:

k(t, x, �) = 1− (2− δ)θε(�max − �)θε(t− x− �)[θε(x)− θε(x+ ε−D)] (22)

For t � D + �max one has a tube of radius �max centered on the x-axis,
within which the metric has been modified. This structure is designated as the
Krasnikov tube. In contrast with the Alcubierre spacetime metric, the metric of
the Krasnikov tube is static once it has been created.
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The stress-energy tensor element Ttt given by:

Ttt =
1

32π(1 + k)2

[
−4(1 + k)

�

∂k

∂�
+ 3
(
∂k

∂�

)2

− 4(1 + k)
∂2k

∂�2

]
(23)

can be shown to be the energy density measured by a static observer, and violates
the WEC in a certain range of �, i.e, TμνUμUν < 0.

To verify the violation of the WEC, let us evaluate the energy density in the
middle of the tube and at a time long after its formation, i.e., x = D/2 and
t� x+ �+ ε, respectively. In this region we have θε(x) = 1, θε(x+ ε−D) = 0
and θε(t− x− �) = 1. With this simplification the form function, (22), reduces
to:

k(t, x, �) = 1− (2− δ)θε(�max − �) (24)

Consider the following specific form for θε(ξ) [5]:

θε(ξ) =
1
2

{
tanh

[
2
(

2ξ
ε
− 1
)]

+ 1
}

(25)

so that the above form function is given by:

k = 1−
(

1− δ
2

){
tanh

[
2
(

2ξ
ε
− 1
)]

+ 1
}

(26)

Choosing the following values for the parameters: δ = 0.1, ε = 1 and �max =
100ε = 100, the negative character of the energy density is manifest in the
immediate inner vicinity of the tube wall, as shown in Fig. 3.
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Fig. 3. Graph of the energy density, Ttt, as a function of � at the middle of the Kras-
nikov tube, x = D/2, and long after its formation, t � x + � + ε. We consider the
following values for the parameters: δ = 0.1, ε = 1 and �max = 100ε = 100
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4 Superluminal Travel Requires the Violation
of the WEC

It is simpler to apply global techniques and the topology of space for a definition
of superluminal travel. The following treatment is based on work by Ken Olum
[8].

A path, P , is defined along which a propagating signal travels further than
a signal on any nearby path, in the same interval of externally defined time.
Spacelike two-surfaces are constructed around the origin and destination points
of the path, P . The spacetime metric is arranged so that a causal path exists
between the origin and destination points, A and B, respectively, but there are
no other causal paths that connect the two-surfaces. Both two-surfaces, ΣA and
ΣB , are composed of a one-parameter family of spacelike geodesics through the
respective origin and destination points.

Formally, a causal path, P , is superluminal from an origin point, A, to a
destination point, B, only if it satisfies the following condition.

Superluminal Condition: There exists 2-surfaces ΣA around A and ΣB
around B such that:

(i) if p ∈ ΣA then a spacelike geodesic lying in ΣA connects A to p, and
similarly for ΣB , and,

(ii) if p ∈ ΣA and q ∈ ΣB , then q ∈ J+(p), i.e., q is in the causal future of p,
if and only if p = A and q = B.

General Considerations: Let there be a path P satisfying the above condi-
tion, and suppose that the generic condition holds on P (recall that the generic
condition states that the path P contains a point in which k[aRb]cd[ekf ]k

ckd �= 0
is satisfied, where k is the tangent vector to the geodesic). With these assump-
tions, it can be shown that the WEC must be violated, somewhere along P .

Note that P must be a null geodesic.
Proof: If P is not a geodesic it can be varied to make a timelike path from

A to B. Let O be an open neighborhood of B contained in ΣB . If P is timelike
anywhere, then it can be varied to make a timelike path from A to points of O
other than B, contradicting the Superluminal Condition.

Let k be the tangent vector to the geodesic P . k must be normal to the
surface ΣA, otherwise there would be points on ΣA in the past of points on P .
Similarly for ΣB .

We define a congruence of null geodesics with an affine parameter u, normal
to ΣA, and extend k to be the tangent vector at each point of the congruence.

There is no point x ∈ P that is conjugate to ΣA.
Proof: If x were an interior point of P then it would be possible to deform

P into a timelike path [13]. If x = B, then different geodesics of the congruence
would all end at B or points in an open neighborhood close to B contained in
ΣB . These geodesics would have different tangent vectors to ΣB . Therefore no
point on P is conjugate to ΣA.
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The expansion of the geodesic congruence is given by θ̂ = km;m , where m
runs over two orthogonal directions normal to k. At A we use directions that lie
in ΣA and at B we use directions that lie in ΣB . Since ΣA is extrinsically flat
at A, the geodesics are initially parallel, therefore θ̂ = 0.

The evolution of the expansion, θ̂, is given by the Raychaudhuri equation for
null geodesics:

dθ̂
du

= −Rμνkμkν + 2ω̂2 − 2σ̂2 − 1
2
θ̂2 (27)

in which ω̂ is the twist, σ̂ the shear and Rμν is the Ricci tensor.
Since there are no conjugate points, θ̂ is well-defined along P . We also have

ω̂μν = 0, because the congruence is (locally) hypersurface orthogonal, according
to the dual formulation of Frobenius’ theorem [13].

If the WEC holds, then by continuity the null energy condition (NEC) will
also be satisfied. The NEC is given by Tμνkμkν ≥ 0, for all null kμ. Using
Einstein’s equation, we obtain Rμνkμkν = 8πTμνkμkν . Thus if the WEC is sat-
isfied, then Rμνkμkν ≥ 0 and therefore dθ̂/du ≤ 0. From the generic condition,
k[aRb]cd[ekf ]k

ckd �= 0 on a point along P , σ̂ cannot vanish everywhere. Recall
that θ̂ = 0 at A. Thus, the WEC implies, that at B, we have:

θ̂ < 0 . (28)

Weak Energy Condition Violation: If we can prove that the expansion
obeys the inequality, θ̂ ≥ 0, at B, then the WEC is violated somewhere along P .

Firstly, it is important to establish a basis for vectors at B. Let E1 and E2
be orthonormal vectors tangent to ΣB at B, and let E3 be a unit spacelike
vector orthonormal to E1 and E2, with g(k,E3) > 0. Let E4 be the unit future-
directed timelike vector orthogonal to E1, E2 and E3. Using this basis, normal
Riemannian coordinates are established near B, so that the 2-surface ΣB consists
of points with t = z = 0.

Let λ(s) be a smooth curve on ΣA, with λ(0) = A. Let λ(s, u) be the point an
affine distance u along the null geodesic from λ(s). Each geodesic will eventually
pass near B and will cross the hypersurface with t = 0. This crossing point
is called λ′(s), and the length of the vectors k on ΣA are adjusted, so that
λ(s, 1) = λ′(s).

The z coordinate of λ′(s) is negative, otherwise points on ΣB (z = t =
0) would be the future of points of the geodesics from ΣA, contradicting the
Superluminal Condition.

Let Z be the tangent vector to λ(s, u) in the s direction. By construction,
kμZμ = 0 on ΣA, which is constant along each geodesic [13,14], so that kμZμ = 0
is verified everywhere.

Following along λ′(s), from B, we have:

0 =
d
ds

(kμZμ) = (kμZμ);νZν = kμ;νZμZ
ν + kμZμ;νZ

ν (29)
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The only non-vanishing components of k are k3 and k4. Since λ′(s) lies in the
t = 0 hypersurface, we have Z4 = 0 everywhere, so that the only contribution
to kμZμ;ν at B is from μ = 3. Therefore, from the above relation, we have:

kμ;νZμZ
ν = −k3Z3;νZ

ν (30)

But atB, we have Z3 = 0. We see that Z3;νZ
ν ≤ 0, otherwise the z coordinate

of λ′(s) would become positive. By construction, k3 > 0, so that k3Z3;νZ
ν ≤ 0

and kμ;νZμZ
ν ≥ 0.

The congruence of geodesics provides a map from tangent vectors to λ(s) at
A to tangent vectors to λ′(s) at B. As there are no conjugate points, the map is
non-singular and can be inverted. Choices of λ(s) can be found so that Z = E1
or Z = E2, thus k1

;1 ≥ 0 and k2
;2 ≥ 0, respectively, so that:

θ̂ = km;m ≥ 0 (31)

contradicting θ̂ < 0.

Olum’s Superluminal Theorem: Any spacetime that admits superluminal
travel on some path P (according to Olum’s definition of the Superluminal Con-
dition) and that satisfies the generic condition on P , must also violate the WEC
at some point of P .

4.1 Applications to the Casimir Effect

It was already mentioned that although classical forms of matter obey the energy
conditions, these are violated by certain quantum fields, amongst which we may
refer to the quantized scalar and fermionic fields, the Casimir and the Topological
Casimir Effect, squeezed vacuum states, the Hawking evaporation, the Hartle-
Hawking vacuum, cosmological inflation, etc.

It is interesting to apply the Superluminal Condition to the Casimir effect
[8]. The quantum expectation value of the electromagnetic stress-energy tensor
between circular conducting plates is:

Tμν =
π2

720d4
diag (−1, 1, 1,−3) (32)

For a geodesic travelling in the z-direction, we have:

Rμνk
μkν = − 2π2

45d4
< 0 (33)

Let ΣA be the lower plate and ΣB be the upper plate. Assuming that all
geodesics are initially parallel, so that θ̂ = 0 at A. We have σ̂ = 0, by symmetry,
and ω̂ = 0, because the congruence is hypersurface orthogonal. The Raychaud-
huri equation reduces to:

dθ̂
du

= −Rμνkμkν > 0 (34)
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This inequality shows that the geodesics around P are defocused. Thus the
geodesic P travels further in the z-direction, by the same t, than neighbouring
geodesics, in which the Superluminal Condition is satisfied.

It is also important to note that the above analysis is probably not complete,
because the mass of the plates have not been taken into account.

5 Quantum Inequality and Applications

Intensive research has been going on into the violation of the energy conditions.
It is interesting to note the pioneering work by Ford in the late 1970’s on a new
set of energy constraints [15], which led to constraints on negative energy fluxes
in 1991 [16]. These eventually culminated in the form of the Quantum Inequality
(QI) applied to energy densities, which was introduced by Ford and Roman in
1995 [9].

The QI was proven directly from Quantum Field Theory, in four-dimensional
Minkowski spacetime, for free quantized, massless scalar fields, and takes the
following form:

τ0
π

∫ +∞

−∞

〈TμνUμUν〉
τ2 + τ2

0
dτ ≥ − 3

32π2τ4
0
, (35)

in which, Uμ is the tangent to a geodesic observer’s wordline; τ is the observer’s
proper time and τ0 is a sampling time. The expectation value 〈〉 is taken with
respect to an arbitrary state |Ψ〉. One does not average over the entire wordline
of the observer, as in the averaged energy conditions, but weights the integral
with a sampling function of characteristic width, τ0. The inequalities limit the
magnitude of the negative energy violations and the time for which they are
allowed to exist. The basic applications to curved spacetimes is that these appear
flat if restricted to a sufficiently small region.

Using the restrictions imposed by the QI to wormholes [17] and the warp
drive [18], it was verified that the throat size of the wormholes and the Alcu-
bierre bubble wall are extremely thin, i.e., only slightly larger than the Planck
length. It was also verified that the energy involved to support the Alcubierre
bubble and the Krasnikov tube are probably not physically plausible, for they
are extraordinary large. For example, considering the mass of a typical galaxy,
MMilkyWay ≈ 1012MSun = 2 × 1042 kg, the energy necessary to support the Al-
cubierre bubble is E ≤ −5, 5 × 1021MMilkyWay × vb, which is of the order 1010

times the total mass of the Universe. In the opposite regime, for microscopic Al-
cubierre bubbles, of the order of the Compton length of an electron, the negative
energy is of the order E ∼ −104MSun. Due to these enormous amounts of exotic
matter, van den Broeck proposed a slight modification of the Alcubierre metric
which ameliorates considerably the conditions of the warp drive [19].

Considering the applications of the QI to the above-mentioned solutions,
one may, rightly so, conclude that these solutions are not physically plausible.
However, there are a series of considerations that can be applied to the QI [20].
Firstly, the QI is only of interest if one is relying on quantum field theory to
provide the exotic matter to support the solutions above-mentioned. But there
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are classical systems (non-minimally coupled scalar fields) that violate the null
and the weak energy conditions [21], whilst presenting plausible results when
applying the QI. Secondly, even if one relies on quantum field theory to provide
exotic matter, the QI does not rule out the existence of the considered solutions,
although they do place serious constraints on the geometry.

Despite of the impressive work done by Ford and Roman, namely the deduc-
tion of the QI and all it’s applications [5,17,18,22] the current version of the QI
is certainly not the last word on the subject of exotic matter and the energy
condition violations.

6 Conclusion

It does seem to suggest that if one adopts a conservative view, and impose the
WEC, Olum’s theorem prohibits superluminal travel. As was mentioned in the
introduction the present work serves as a bridge to ongoing research on space-
times which generate closed timelike curves. An extension of Olum’s theorem
to these spacetimes is the next step, or the generalization and modification of
his superluminal definition. This is not easily accomplished because most of the
definitions adopted in the causal structure of spacetime [13,14] break down in
the presence of CTCs.
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Factor Structure of Rational Vacuum Metrics
and a Generalization of the Tomimatsu-Sato
Solutions

Cornelius A. Hoenselaers

Department of Mathematical Sciences, Loughborough University,
Loughborough, LE11 3TU, UK

Abstract. We consider stationary axisymmetric vacuum gravitational fields. We use
the factor structure of rational solutions to derive a first order and a second order
equation for two functions. From the solutions of those equations the Ernst potential
can be found by quadrature. As an application we give a new class of solutions in
spherical coordinates which generalize the Tomimatsu-Sato solutions.

1 Introduction

It is well-known that the polynomials appearing in certain rational metrics de-
scribing axisymmetric stationary vacuum, or indeed electrovacuum, solutions
can be factorized, cf. [1], [2] and further references quoted therein.

Factorizability is a property which holds only in special coordinate systems
or, equivalently, with respect to particular functions. Here, we shall employ co-
ordinates which are related to Weyl’s canonical coordinates by

� =

⎛⎝ sinhx
ex

coshx

⎞⎠ sin y , ζ =

⎛⎝ coshx
ex

sinhx

⎞⎠ cos y (1)

(x and y are prolate spheroidal, spherical and oblate spheroidal coordinates, re-
spectively). The solutions are to be rational in sinhx, coshx, ex, sin y and cos y.
In most of what follows we shall as pars pro toto refer to prolate spheroidal
coordinates. The transition to oblate spheroidal coordinates can be made by in-
terchanging sinhx and coshx, the corresponding expressions for spherical coor-
dinates can be obtained by replacing the hyperbolic functions by the exponential
function. We shall indicate the places where this replacement does not work.

The metric is written as

ds2 =
B

A
e2γ(dx2 + dy2) +

1
B

(G dϕ2 + 2Cdϕdt−Adt2) . (2)

The functions A,B etc. are supposed to be polynomials in coshx and cos y. In
saying this we have assumed that the solution in question is regular, and hence
analytic, at some part of the coordinate axis � = 0, i.e. there are no odd powers
of sinhx and sin y.
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In Sect. 2 we shall discuss the factor structure of vacuum solutions rational
in the sense described above.

A particularly important class of vacuum metrics are the Tomimatsu-Sato
solutions [3]. They are a sequence of solutions for which the polynomials in
the numerator and denominator of Ernst’s ξ-potential are of degree n2 − 1 re-
spectively n2 – which is the case for all known asymptotically flat polynomial
solutions – and which, in addition, satisfy the relations K = 0, to be discussed
below.

So far the only known solution in the Tomimatsu-Sato class in spherical
coordinates is the extreme Kerr solution, i.e. the Kerr solution with m = a. In
Sect. 3 we shall give a class of solutions in polar coordinates. The first solution
in this class is, not surprisingly, the extreme Kerr solution. The other solutions
are not asymptotically flat.

2 The Factors

We write the Ernst potential in the form

E = f + iψ =
α− β
α+ β

=
A+ iI
B

(3)

and use the derivative operator

∂ = ∂x + i∂y . (4)

With the standard

f =
A

B
, ω =

C

A
, �2 = (AG+ C2)B−2 , (5)

Einstein’s vacuum field equations reduce to

∂∂∗� = 0 , (6a)
−i�∂ψ = f2∂ω , (6b)

1
�
(∂(�∂∗E) + ∂∗(�∂E)) =

2
f
∂E∂∗E , (6c)

∂γ∂� =
1
2
∂2�+

�

4f2 ∂E∂
∗E . (6d)

We use the ∗ to indicate complex conjugation. Rewriting the third of the
relations (5) as AG = (�B + C)(�B − C) one concludes [4] that A and G have
to factorize, i.e.

A = αα∗ − ββ∗ = AĀ ,
G = NN̄ , �B + C = AN̄ , �B − C = ĀN .

(7)

While A is a polynomial in coshx and cos y, the factors A and Ā depend in
general on coshx, sinhx, cos y and sin y. Most of the following equations contain
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only one of the factors A or Ā. To keep the number of equations down and write
them in a concise form we define

∂̄ = ∂∗ , (8)

and introduce an operator ¯ which acts on script quantities and the derivative
operator ∂ (for historical reasons the Ernst potential E is an exception to this
rule).

Rewriting (6b) we obtain

2�(α∗ + β∗)2(α∂β − β∂α) = A(A(N̄∂Ā − Ā∂N̄ )− ĀB∂�) .

This expression codes four equations, its complex conjugate equation and the
corresponding “barred” equations. Note that the polynomials A and N are real.
As α∗ +β∗ does not contain a factor A, we conclude that there exist polynomials
K and K̄ such that

α∂β − β∂α = AK , α∂∗β − β∂∗α = ĀK̄ .

We write this as one equation, viz.

α∂β − β∂α = AK . (9)

Again, (9) codes four equations. Note that the polynomials K are, in general,
complex. Introducing K and using the definition of B := |α+ β|2 we arrive at

(α∗ + β∗)(Ā(α+ β)∂�+ 2�(α∗ + β∗)K) = A(N̄∂Ā − Ā∂N̄ )

whence we conclude that there exist polynomials P such that

PA = (α∗ + β∗)(Ā(α+ β)∂�+ 2�(α∗ + β∗)K) (10)

and finally

(α∗ + β∗)P = N̄∂Ā − Ā∂N̄ . (11)

Using (9) the Ernst equation (6c) is rewritten as

AĀ(αΔβ − βΔα) = AK(α∗∂∗α− β∗∂∗β) + ĀK̄(α∗∂α− β∗∂β) .

We see that (α∗∂α−β∗∂β) contains a factor A. The fact that the ∂ operator does
not lower the order of the polynomial in trigonometric and hyperbolic functions
to which it is applied leads to the conclusion that

α∗∂α− β∗∂β = A∂Ā . (12)

Solving (9) and (12) for the derivatives of α and β we get

Ā∂α = β∗K + α∂Ā , Ā∂β = α∗K + β∂Ā . (13)
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Operating with ∂̄ on (9), with ∂ on its “barred” version, subtracting and elim-
inating the derivatives of α and β via (13) we get equations which can be sim-
plified by the Ernst equation (6c) to yield

A∂̄K −K∂̄A+
1
2�

(AK∂̄�+ ĀK̄∂�) = 0 . (14)

Performing similar operations on (12) one obtains

A∂∂̄A− ∂A− ∂A∂̄A+ K̄K̄∗ = 0 . (15)

The integrability condition of (9), i.e. ∂( ¯9)− ∂̄(9), is actually (14) = (14),
whereas the analogous condition for (12) yields Ā2(15) = A2(15) from which
(15) follows. The four equations (14) and two equations (15) for the two real
functions A, Ā and the two complex functions K, K̄ are equivalent to the Ernst
equation and the integrability conditions for (13). The potentials α and β can
be recovered from (13).

Let us now see what information can be extracted from (6d). First we note
that γ contains a term which comes from the choice of coordinates and is thus
also present in flat space. We define γ = γ1 + 1/2 ln(∂�∂∗�) to remove this term
and end up with the equation

∂γ1∂� =
�

A
KK̄ ,

which shows that, in Weyl’s coordinates � and ζ, γ1 is at most a step function
of ζ on the coordinate axis � = 0. Moreover, we expect e2γ1 to contain a factor
of A; A = 0 is the “infinite redshift surface” or “limit of stationarity” and we
don’t expect the metric to be singular there. Indeed, after some manipulation,
the details of which we shall omit here, one derives

2�KK̄ = ∂A∂�+ 2HA

with some polynomial H. Thus, with γ1 = 1/2 lnA+ γ2, we get

∂γ2∂� = H .

As γ1 is constant on the coordinate axis, γ2 should be the logarithm of a poly-
nomial counteracting A. Its derivative is thus rational and the denominator is
∂�.

Hence γ2 ∼ ln ∂� up to an additive function which is annihilated by ∂. Indeed,
it can be shown that ∂∗H = 0 which shows that H is a multiple of ∂2�. As γ1
has to be constant at � = 0 this multiple has to be the negative of the degree of
A in {sinhx, ex, coshx} which we denote by m. Finally we find that

e2γ = c
A

D
, D = (∂�∂∗�)m/2−1 . (16)

c is, in general, a step function of the Weyl coordinate ζ. From this expression
and the equations above one concludes that

2�KK̄∗ + ∂�∂(AĀ) + n2AĀ∂2� = 0 . (17)
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This equation is in fact a first integral of (14) and (15). It has been said above that
all known asymptotically flat rational solutions have α = O(n2), β = O(n2 − 1)
and thus A = O(n2), K = O(n2 − 1) and thus A = O(2n2) with m = 2n2 with
the obvious notation for the degree of the polynomials.

Now we turn to the calculation of the invariants of the Weyl tensor. In terms
of the Ernst potential they are given by

C =
1
8
e−2γ(∂∂̄E − 1

f
∂E ∂̄E) , (18a)

C = −1
8
e−2γ

(
2∂2E − 4∂γ∂E +

1
f

(∂E)2
)
. (18b)

In Ernst’s notation [5] C = C0, C = C2, C̄ = C−2 whereas in Newman-Penrose
parlance C = ψ2, C = ψ0, C̄ = ψ4. The spin invariant quantities are

I1 = C , (19a)
I2 = CC̄ − 9C2 . (19b)

The metric is of Petrov type D if either I2 = 0 or C = 0. Clearly, C and C, being
second derivatives of the Ernst potential, are proportional to (α + β)−3. It will
be seen below that, at least for vacuum, I2 is proportional to (α + β)−5. After
some calculations one finds

C =
1
4

D

(α+ β)3
1
A�
M ,

M = (α+ β)(AK∂̄�+ ĀK̄∂�) + 2�KK̄(α∗ + β∗) .

Again we expect M to contain a factor of A�; space-time should not be
singular on the limit of stationarity or on the coordinate axis. Using the Ernst
equation (13) together with (12) we can rewrite M as

M = 2�Ā(K̄∂(α+ β)− (α+ β)∂K̄) = 2�A(K∂̄(α+ β)− (α+ β)∂̄K) .

HenceM contains a factor of � and both factors A and Ā and is consequently
divisible by A�. Hence there exists a complex polynomial T invariant under the
− operation defined by

TA = K̄∂(α+ β)− (α+ β)∂K̄ . (20)

We get for C

C =
1
2

DT

(α+ β)3
. (21)

The calculation of C is a bit more involved. First we note that (18a), (18b)
yields

C =
1
2

D

(α+ β)3
1
∂�ĀT ,

T = (α+ β)(∂�∂K −K(1− n2)∂2�)− 3K∂�∂(α+ β) ,

(22)
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where n2 is the degree of α in sinhx. We need not worry about the ∂� in the
denominator; this factor is found either in D given by (16) or, if n2 = 1, in T .
On the other hand there is Ā. To avoid an A in the denominator of I2, T has to
contain either A or Ā. Calculating C from the Bianchi identities one finds

C =
(α+ β)A
P̄Ā (3∂�C + 2�∂C) .

Comparing this to the above expression we see the factors A and Ā explicitly.
It is, moreover, easy to see that the terms not explicitly multiplied by (α + β)
in T and T drop out of I2 which is thus proportional to (α + β)−5. Note that
this is no longer true for electro-vacuum fields.

We now turn our attention to the behaviour of the various polynomials un-
der an infinitesimal invariance transformation of the Ernst equation. It is well-
known that the Ernst equation is invariant under the three-parameter infinites-
imal transformation

α̇ = cα+ λβ , β̇ = λ∗α− cβ , (23)

where c is real, λ complex and overhead dot denotes the derivative with respect
to the parameter of the transformation, i.e. α̇ = ∂εα. It can be shown that A
and K are invariant under such a transformation. However, P and T are not. By
taking derivatives of (10) and (20) with respect to ε and equating coefficients of
λ and c one can show that there are polynomials Pα,Pβ , Tα and Tβ such that

Āα∂�+ 2β∗K� = APα , Āβ∂�+ 2α∗K = APβ , (24a)
K̄∂α− α∂K̄ = ATα , K̄∂β − β∂K̄ = ATβ . (24b)

Note that the original P and T are given by

P = Pα + Pβ , T = Tα + Tβ .

Indices indicate that the polynomials transform like α, respectively β, cf. (23).
To summarize: The system (14) and (15) together with their first integral

(17) are equivalent to the Ernst equation. The Ernst potential can be recovered
from (13), the integrability conditions of which are satisfied. Note that equations
(13) are invariant under the symmetry group of Ernst’s equation and the solution
depends on four parameters, one is an arbitrary scaling of α and β while the
other three pertain to the SU(1, 1) transformations. One finds the metric by first
calculating P from (10), indeed the calculation is facilitated by (24a), and then
integrating (11) for N . The invariants of the Weyl-tensor are given by (20), (21)
and (22).

3 The Tomimatsu-Sato Solutions

The most important characterization of the Tomimatsu-Sato solutions, the one
which we shall adopt here, is

K = real (25)
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which is equivalent to Tomimatsu-Sato’s “rule (a)”. For real K, it is convenient to
decompose (13) into the real and imaginary part which yields two real equations
for A and K. The real part contains only derivatives with respect to x while the
imaginary part has only y-derivatives. Cross-differentiating, subtracting those
equations and then combining with the imaginary part of (17) yields

sinhx cos y∂xA+ coshx sin y∂yA− coshx cos yn2A = 0 .

Similarly one finds

sinhx cos y∂xK + coshx sin y∂yK − coshx cos y(n2 − 1)K = 0 .

The equations imply that A is a homogeneous polynomial of degree n2 in
sinhx and sin y while K is fixed to be homogeneous of degree n2 − 1.

In view of the fact that all polynomials appearing in (14), (15) and (17) are
homogeneous we introduce a new independent variable and new functions by

z =
{sinhx, ex, coshx}

sin y
, t =

cos y
{coshx, ex, sinhx} ,

a = sin−n2
yA , k = sin−n2+1 yK .

(26)

a and k are polynomials in z of degree n2. z2 has been used as independent
variable by Cosgrove [6] who showed that Tomimatsu-Sato’s “rule (a)” follows
from the assumption of A’s being homogeneous in sinh2 x and sin2 y.

Using a, k and z equations (14), (15) and (17) can be rewritten as

2z(a∂zk− k∂za) + ak + āk̄ = 0 (27)

a∂z((ε+ z2)∂za)− (ε+ z2)(∂za)2 − n2a2 + k̄
2

= 0 (28)

2z(kk̄ + n2aā)− (ε+ z2)∂z(aā) = 0 (29)

with ε = 1 for prolate spheroidal coordinates, the coordinates in which the
Tomimatsu-Sato solutions are normally written, ε = 0 for spherical coordinates
and ε = −1 for prolate spheroidal coordinates. Note that only the “Ernst equa-
tion” (27) does not make any reference to the type of coordinates used.

We now drop the requirement that a and k are polynomial in z. (28) suggests
the substitution

a = eb, k̄ = l̄eb. (30)

We get

∂z((ε+ z2)∂zb)− n2 + l̄
2

= 0 . (31)

The solution is

b = cf(z) + d +
1
2
n2 ln(ε+ z2)−

∫ (
(ε+ z2)−1

∫
l̄
2
dz
)

dz (32)



Factor Structure of Rational Vacuum Metrics 299

where c and d are constants of integration and f(z) = {arctan z, 1/z, arctanhz},
respectively. Inserting (30) into (27) yields

2zl
ε+ z2

(
c̄− c +

∫ (
l̄
2 − l

2
)

dz
)

+ l̄ + l + 2z∂zl = 0 (33)

while (29) becomes

2zl̄l +
∫ (

l̄
2

+ l
2
)

dz − c− c̄ = 0 . (34)

Equation (34) is actually a first integral of (33); it can be derived from (33)/l
and its bar-conjugate. Moreover l and l̄ obey

l(z) = −l̄(−z) . (35)

For the Tomimatsu-Sato solutions l is a rational function of the form
O(n2 − 1)/O(n2) and the constant c is to be chosen such as to absorb the
f(z) term in (31); the n2 ln(1 + z2) term assures that eb is polynomial in z.

None of the equations (33), (34) or (35) makes any reference to n. Any solu-
tion of those equations would give rise to what could be justly called Tomimatsu-
Sato solution; n.b. the definition here is k = real, cf. (25).

There are, however, no known solutions in closed form for which l is not
rational.

A recurrence relation for the Tomimatsu-Sato solutions has been discovered
by Nakamura [7] and investigated further in [8]. Also, Yamazaki [9] has given
expressions in closed form for the Tomimatsu-Sato solutions.

Cosgrove [6] and the present author [10] have given solutions in terms of
a Laurent expansion in z pertaining to prolate spheroidal coordinates. Also,
Yamazaki [11] and Hori et al. [12] have written about the form of generalized
Tomimatsu-Sato solutions, i.e. those for n2 or δ, as it is often called, non-integer.

4 A New Class of Solutions

In this section we shall describe a new family of solutions in the Tomimatsu-
Sato class. As it has been said above, so far the only known solution in spherical
coordinates was the extreme Kerr solutions.

In this section we concentrate on spherical coordinates and set ε = 0 in
(27)-(29), i.e. the equations to be solved are

2z(a∂zk− k∂za) + ak + āk̄ = 0 , (36a)

a∂z(z2∂za)− z2(∂za)2 − n2a2 + k̄
2

= 0 , (36b)

2(kk̄ + n2aā)− z∂z(aā) = 0 . (36c)

The solution a = z + 1, ā = z − 1, k = k̄ = 1 yields the extreme Kerr solution.
In a previous paper we had found a solution for which a and k are third order
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polynomials in z. Considering only the leading terms, i.e. a ∼ zp+O(p−1), k ∼
zq +O(q − 1), reveals that either p = n2, q = n2 − 1 or p = q.

As an aside, the leading terms in (27)-(29) are the same and a leading term
analysis reveals also that, for asymptotically flat solutions, p = n2 and q = n2−1.
It would, however, be a premature conclusion to consider this as a proof of the
observed fact that, for the original Tomimatsu-Sato solutions, α = O(n2) and
β = O(n2−1). Recall that the parameter n2 has been inferred from observations.

To return to the system (36a)(36b)(36c), direct calculation shows that all
coefficients in a and k apart from the constant and leading ones seem to van-
ish. This motivates the Ansatz a, k = leading term + constant term. Note that
equations (35) are invariant under a scaling of z - this is tantamount to x→ x+
const. - and a→ c1a, k̄→ c1k̄, ā→ c2ā, k→ c2k which can be used to eliminate
superfluous constants. The solutions we have found are

a = z2n−1 + 1 , ā = z2n−1 − 1 ,

k = n+ (n− 1)z2n−1 , k̄ = n− (n− 1)z2n−1 .

(37)

Following (26) we set z = ex/ sin y, A = sin yn
2
a, K = sin yn

2−1 k and solve
(13) for α and β. The solution is

α = e(2n−1)xC+(n− 1) + i sin2(n−1) yC−(n) ,

β = −ie(2n−1)xC−(n− 1) + sin2(n−1) yC+(n) ,

C±(n) = (1 + cos y)n ± (1− cos y)n .

(38)

Here, we have removed common factors in α and β and used the SU(1, 1)
invariance group of Ernst’s equation - n.b. (6a)(6b)(6c)(6d) is invariant under
it and the solution contains arbitrary parameters - to bring the solution into a
form such that it reduces to the extreme Kerr solution for n = 1.

The solutions are, with this exception, not asymptotically flat. For large,
respectively small, x they approach a variant of the Zipoy-Voorhees solutions.
Nevertheless they are valid generalizations of the Tomimatsu-Sato solutions as
they satisfy the defining relation (25).

The remaining functions in the metric (2) are given by

A = 4 sin y2(n−1)(ex(2n−1) − sin y(4n−2)) ,

C = 4 sin y2(n−1)(2(1− n)ex(4n−1) + e2nxC+(2n− 1) + 2ex sin y(4n−2)) ,

e2γ = e2x(1−n2) sin y2(n
2−3n+2)A .

(39)

It should be noted that C is defined up to an arbitrary constant multi-
ple of A which, in the asymptotically flat case is to be chosen such that
C(y = 0, π) = 0. This is, of course, only possible for n = 1 in which case
we should add −2A.
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5 Concluding Remarks

We have presented a formalism for generalizing the Tomimatsu-Sato solutions
and have found such a solution explicitly. For large x the solutions approach
a variant of the Zipoy-Voorhees solutions and are related by an Ehlers trans-
formation to the static solution f = [(1 + cos y) / (1− cos y)]δ. Even though we
have derived the solutions under the assumption that a and k are polynomials,
the final solution is valid for any n and thus also for non-integer parameters.
Thus (38) is a one-parameter family of solutions of the Ernst equation in the
Tomimatsu-Sato class.
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Abstract. We present an exact solution of Einstein equations that describes a Bianchi
type III spacetime with conformal expansion. The matter content is given by an
anisotropic scalar field and two perfect fluids representing dust and isotropic radiation.
Based on this solution, we construct a cosmological model that respects the evolution
of the scale factor predicted in standard cosmology.

A crucial question in cosmology is whether the observed isotropy of the cosmic
microwave background (CMB), together with the apparent homogeneity and
isotropy of clustering matter, suffices to guarantee the Cosmological Principle.
An affirmative answer is strongly supported by a theorem proved by Ehlers,
Geren and Sachs [1]. The EGS theorem ensures that a spacetime region satisfying
Einstein equations and containing only dust and radiation has a Friedmann-
Robertson-Walker (FRW) geometry provided that the dust velocity field uμ is
geodesic and expanding, and that the distribution function of the photons is a
solution to the Liouville equation which is isotropic with respect to uμ. In fact,
the result that the geometry is FRW depends critically on the hypotheses of the
theorem, and there exist counterexamples in which all but one of the assumptions
are satisfied [2,3,4]. The theorem admits generalizations for matter consisting in
a generic perfect fluid [2], and for an almost isotropic CMB [5], case in which
the geometry is approximately of the FRW form.

We will concentrate our discussion on the validity of the EGS theorem when
one relaxes the assumption about the kind of matter content. This is important
in modern cosmology because, in order to explain the observed acceleration
detected with type Ia supernovae, scalar fields are often introduced to generate
a quintessence component. It was recently shown that the conclusions of the
EGS theorem remain valid in the presence of a quintessence field unless the
gradient of the field is orthogonal to the dust congruence [4]. This alternative
to the FRW geometry has been neglected so far because it is believed to lead
to unphysical situations. We will show, nevertheless, that it is possible to find
physically acceptable systems in which the commented alternative allows one to
circumvent the Cosmological Principle.

The most general line-element and Einstein tensor compatible with an
isotropic radiation can be found in [2]. The aim of the present work is to explicitly
construct a feasible solution to the Einstein equations respecting this isotropy
of the CMB. This task includes determining not only the metric, but also the
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matter content. Furthermore, we want such a content to be of cosmological and
physical interest, in the sense that it must be composed of dust, radiation, and a
scalar field, and that none of the energy conditions (weak, strong or dominant)
is violated. In addition, we will accept that both the perfect fluid components
and the spatial sections of the spacetime are homogeneous.

Our ansatz for the metric is

ds2 = a2(η)
[
−dη2 + dx2 + e2xdy2 + dz2

]
. (1)

This is a Bianchi type III metric, with Killing vectors given by ∂x−y∂y, ∂y, and
∂z. It can be considered as the vanishing-rotation member of a family of line-
elements with application in rotating cosmology [6] that are expanding versions
of a class of Gödel-like metrics [7]. The spatial topology is the direct product
of a pseudosphere and a real line [7]. The velocity field uμ = δμη /a is geodesic,
shear-free and vorticity-free. Its expansion is 3a′/a2, where the prime stands for
the derivative with respect to the conformal time η. Besides, metric (1) possesses
a conformal Killing vector (CKV) ξμ = a(η)uμ. Actually, the existence of this
CKV proportional to the velocity uμ suffices to guarantee the isotropy of the
CMB (for comoving radiation), as well as the absence of parallax effects [6].

The Einstein equations for this metric are

Ea4 = 3(a′)2 − a2, Pxa
4 = Pya4 = Pza4 − 1 = (a′)2 − 2aa′′, (2)

where E ≡ −T ηη is the energy density and Pi ≡ T ii (i = x, y, or z) are the princi-
pal pressures. As for the matter content, let us start by introducing a massless,
minimally coupled scalar field Φ with vanishing self-interaction potential. The
dynamical equation for such a field is Φ;μνg

μν = 0, with gμν being the inverse
of the metric and the semicolon denoting the covariant derivative. A solution is
Φ = Cz, where C is any constant number. It is worth remarking that, on this
solution, the gradient of Φ is actually orthogonal to the four-velocity uμ. In addi-
tion, the energy-momentum tensor of the scalar field Tμν = Φ,νΦ,μ −Φ,σΦ,σδμν /2
becomes diagonal, with E(Φ) = P

(Φ)
z = −P (Φ)

x = −P (Φ)
y = C2/(2a2). It is

straightforward to check that all of the energy conditions are then satisfied, so
that the solution is physically viable. Moreover, choosing C = 1 (or C = −1
with a flip of sign in z), one can in fact absorb in the contribution of the scalar
field all the anisotropic pressures appearing in (2).

Therefore, accepting the solution Φ = z and denoting by � = E − E(Φ) and
p = Pi−P (Φ)

i the energy density and (isotropic) pressure of the remaining matter
components, we conclude that this additional matter must satisfy the Einstein
equations

�a4 = 3(a′)2 − 3
2
a2, pa4 = (a′)2 − 2aa′′ +

a2

2
, (3)

which are precisely those corresponding to a perfect fluid in open FRW cosmol-
ogy, except for changes of scale by factors of order unity:

η =
√

2ηF ,
√

2 a
(
η =

√
2ηF
)

= aF (ηF ). (4)
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Here, ηF and aF are the conformal time and scale factor of the standard open
FRW model.

We are now in an adequate position to obtain the solution that we were
seeking. We assume that the remaining matter consists of dust and radiation,
which form a two-component perfect fluid with four-velocity uμ. The energy
density and pressure are thus given by � = A2/a4 + D/a3 and p = A2/(3a4),
where A and D are two positive constants. One then arrives at the following
solution of (3):

a =
D

3

[
cosh

(
η√
2

)
− 1
]

+

√
2
3
A sinh

(
η√
2

)
. (5)

Inverting this formula and integrating dt = adη, one gets the time expressions

η =
√

2 ln

[
3a+D +

√
9a2 + 6Da+ 6A2

D +
√

6A

]
, (6)

t =
D

3

[
−η +

√
2 sinh

(
η√
2

)]
+

2A√
3

[
cosh

(
η√
2

)
− 1
]
. (7)

Clearly, this solution leads to a cosmological model that coincides in most of
its predictions with those of an open FRW scenario. In particular, the thermal
history and the cosmological parameters that depend only on the evolution of
the scale factor are essentially the same as in standard (open) FRW cosmology.
For instance, for the Hubble parameter H and the deceleration parameter q one
obtains

H =
a′

a2
=

√
3a2 + 2Da+ 2A2

6a4
, q = 1− aa

′′

(a′)2
=

Da+ 2A2

3a2 + 2Da+ 2A2 > 0. (8)

Note that the expansion is not accelerated, so that (at least in this sense) the
model cannot be considered fully realistic. Nonetheless, this problem can be
overcome as in FRW cosmology, i.e., with the introduction of a cosmological
constant or an additional scalar field with accelerating properties.

In spite of the similarities of the model with an open FRW universe, there
exist some differences between the two cosmological scenarios. For instance, the
standard epochs of radiation and dust domination are now followed by a scalar-
field dominated era. During these eras, the scale factor ranges in 0 < a ≤ A2/D
(radiation), A2/D ≤ a ≤ 2D (dust), and 2D ≤ a (scalar field). We suppose that
A  D, so that there exists a large epoch dominated by clustering matter. A
more relevant discrepancy arises in the relative energy density. In our case, this
density includes also the contribution of the scalar field. Using (8), we get

Ω =
E

3H2 =
a2 + 2Da+ 2A2

3a2 + 2Da+ 2A2 . (9)

One can check that Ω decreases with the expansion. At the big-bang, Ω equals
the unity, like in FRW cosmology. However, when the scale factor expands to
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infinity, Ω does not vanish, but tends to one third. Therefore, the contribution of
the scalar field ensures that the energy density is of the order of the critical one
during the whole evolution of the universe, leading to a quasi-flat cosmology.

To estimate the constants A and D that appear in our model, the parameters
q and Ω, and the current values of a and t, we can proceed as follows. From (8),

a0 =
1
H0

√√√√ 1 + zeq

2
(
1− Ω(d)

0

)
(1 + zeq)− 2Ω(d)

0

, (10)

where the subscript 0 stands for evaluation at present and zeq = −1+Ω(d)
0 /Ω(r)

0 is
the redshift at equilibrium between the contributions to Ω of dust and radiation,
denoted by Ω(d) and Ω(r). In addition, D = 3H2

0a
3
0Ω

(d)
0 and A2 = Da0/(1+ zeq).

Using the values H0 = 65 km/(sMp), Ω(d)
0 = 0.35, and zeq = 5000, we get

A = 1.6× 1024 m, D = 1.0× 1026 m, a0 = 1.2× 1026 m, t0 = 12 Gyr, q0 = 0.18,
and Ω0 = 0.57. Note that A is really much smaller than D, as we had assumed.
Since a0 is smaller but close to 2D, the universe would be at the end of the dust-
dominated era. In addition, we notice that the age of the universe t0, although
very close, is still beyond the lower bounds obtained from observation.

Finally, it is worth commenting that, though the redshift of the radiation
emitted by dust particles depends only on the emission and reception times,
the fact that the metric is anisotropic implies that the distance to astrophysical
objects with identical redshift varies with the direction of observation. However,
it is possible to show that these anisotropies in the measurements of distances
are not large enough to conflict with observational data [8]. Actually, one can
prove that these anisotropies increase with the redshift and that, with the values
estimated above for the parameters of our model, the maximum variation in the
angular diameter distance of a source at unit redshift is less than five per cent,
which is not currently detectable [8].

In conclusion, we have shown that, introducing a scalar field, one can find
anisotropic solutions of the Einstein equations that are compatible with the
expansion of the universe, the isotropy of the CMB, and the homogeneity and
isotropy of clustering matter which follows geodesics. We have proved this fact
by explicitly constructing a solution with the required properties. Such a solution
leads to a cosmological model that possesses most of the desirable features of a
standard FRW scenario.
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Lorentzian Comments on Stokes Parameters
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Abstract. The popular Stokes statements about polarized light are interpreted in a
Minkowskian language using a Lorentzian representation for the Stokes parameters
and the degree of polarization. The evolution equations for Stokes parameters on a
curved space–time are obtained using the parallel transport of the polarization vector
along a null geodesic. The interest of these equations in Astrophysics and Relativistic
Cosmology is outlined.

1 Introduction

Stokes parameters [1] are a useful tool to describe polarized electromagnetic
radiation. They contain exhaustive information about the degree of polarization
(total, linear and circular), angle of polarization and ellipticity pattern. On a
given space–time geometry, variations of such quantities are related with the
way of transporting these parameters along light beams. Hence, the use of the
Stokes parameters is of interest in Relativistic Astrophysics to study the transfer
of polarized electromagnetic radiation, and also in Cosmology, dealing with the
free propagation of polarized microwave background radiation on a perturbed
Friedmann–Robertson–Walker universe. The hope of observing the associated
cosmological polarization pattern is today an open prospect.

For practical purposes, these parameters are operationally defined for a quasi-
monochromatic plane wave whose amplitude and phase are slowly varying func-
tions at the scale of the coherence time [1], [2]. It is worth remembering that
the Stokes parameters are both observer-dependent and basis-dependent quan-
tities. Their definition involves the components of the electric field relative to a
given observer and are referred to an orthonormal basis on the spacelike 2-plane
perpendicular to the direction of propagation measured by the observer. Accord-
ing to conventional notation, they may be arranged in a four-element vector S,
termed Stokes vector, in the following way

S =

⎛⎜⎜⎝
I
Q
U
V

⎞⎟⎟⎠ =

⎛⎜⎜⎝
I

PI cos 2χ cos 2Ψ
PI cos 2χ sin 2Ψ
PI sin 2χ

⎞⎟⎟⎠ (1)

I > 0 being the light intensity and P the (total) degree of polarization,

0 ≤ P =

√
Q2 + U2 + V 2

I
≤ 1 (2)
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The ellipticity angle χ ∈ [−π/4, π/4] determines the eccentricity of the polariza-
tion ellipse, tanχ = ±b/a, b and a denoting, respectively, the lengths of its minor
and major semiaxis. The different helicity states of polarization, left-handed and
right-handed, are associated respectively with the positive and negative values
of χ. When χ = 0 the polarization is said to be linear, and χ = ±π/4 corre-
sponds to circular polarization. The polarization angle Ψ ∈ [0, π) measures the
inclination of the major axis with respect to a given spacelike direction in the
rest space of an observer.

The possibility of using a Lorentzian metric to describe light polarization was
pointed out by Soleillet [3] but, to our knowledge, he did not develop this idea any
further. Later, Perrin employed a Minkowskian four-dimensional space to analyze
the algebraic structure of some scattering matrices [4] and, more recently, several
authors have considered the Soleillet–Mueller matrices and some relevant gener-
alizations from this point of view, [5] [6], [7], [8]. However, many other aspects of
the Soleillet idea remain unexplored, and its development could provide a way of
translating the Minkowskian language from relativistic physics to polarization
phenomena. For instance, some properties about generalized Soleillet–Mueller
matrices given in [7] can also be understood in terms of the algebraic classi-
fication of a symmetric 2–tensor in a Lorentzian four–dimensional metric and,
in particular, in terms of the energy conditions on the matter tensor given by
Plebański some time ago [9].

This contribution to the 24th edition of the Spanish relativistic meeting,
E.R.E–2001, is organized as follows. Section 2 introduces the Stokes space which
can be seen as a four-dimensional time-oriented Lorentzian vector space, using
the familiar relativistic terminology. The elements of this space are called Stokes
vectors. In this framework a distinguished timelike future-pointing vector is as-
sociated with ordinary unpolarized or natural light. Partially polarized light is
represented by any other timelike vector of the same time orientation than nat-
ural light. Its degree of polarization is related with the hyperbolic angle between
both timelike directions. In this picture, a future-pointing null direction rep-
resents totally polarized radiation. These null vectors generate the Stokes null
cone. In Sect. 3 we analyze the (general form of the) transfer equations for Stokes
distribution functions in a curved space–time. In the context of the geometrical
optics approximation, the transport equations for freely propagating radiation
proposed by Dautcourt and Rosen [10] and Bildhauer [11], [12] are recovered. Fi-
nally, in Sect. 4, we comment on the physical interest of the Lorentzian approach
to polarization phenomena and transport equations.

2 The Stokes Space

From (2), one has I2 ≥ Q2 + U2 + V 2, and the equality takes place for totally
polarized light, P = 1. The above relation may be interpreted in a Lorentzian
terminology considering the Stokes space, that is, the set of points

S = {(I,Q, U, V ), I > 0} ⊂ R
4
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endowed with a Lorentzian metric. Let S = (I,Q, U, V ) and S′ = (I ′, Q′, U ′, V ′)
be two Stokes vectors, that is S, S′ ∈ S, then their scalar product is given by

(S, S′) = II ′ −QQ′ − UU ′ − V V ′

Completely polarized lights are represented by null vectors S, (S, S) = 0, and
they generate the Stokes cone. A completely unpolarized or natural light of
intensity I is represented by a privileged positive vector Sn = (I, 0, 0, 0) having
P = 0. Any other positive Stokes vector S �= Sn, (S, S) > 0 (i.e. pointing into
the Stokes cone) represents a partially polarized light with 0 < P < 1.

Next, we consider the Lorentzian interpretation of the degree of polarization
P . Let u be the unitary positive Stokes vector representing natural light of unit
intensity, (u, u) = 1. Then, the intensity of a light represented by the Stokes
vector S is defined as the scalar product of u and S,

I = (u, S) (3)

We have the following decomposition

S = (I − Ip)u+ l (4)

where l is a totally polarized light (null vector) whose intensity is given by
Ip = (u, l). From (4), the scalar product gives

(S, S) = (I − Ip)2 + 2(I − Ip)Ip = I2 − I2p
and from (2), the degree of polarization is given by the ratio of the intensity of
the partially polarized component Ip to the total intensity I,

P =
Ip
I

=

√
1− (S, S)

(u, S)2
(5)

Using the familiar relativistic notation,

s =
S√

(S, S)
= γ(1,β) , γ = (u, s) , β = (q,u, v) (6)

where q ≡ Q/I, u ≡ U/I and v ≡ V/I are the normalized Stokes parameters,
the expression (5) is written as

P =
√

1− 1
γ2 = β ≡ |β| (7)

which provides a new interpretation of the degree of polarization.

Proposition 1: In the Lorentzian representation for polarized radiation, the
degree of polarization P is kinematically interpreted as a “relative velocity” be-
tween the (unitary) Stokes vectors, u and s, respectively associated with natural
and partially polarized lights.
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In particular, the same interpretation can be made for the linear and circular
degrees of polarization which are defined respectively as

βl =
√

q2 + u2 = β cos 2χ, βc = v = β sin 2χ (8)

β being the total degree of polarization previously considered, β =
√
β2

l + β2
c .

Also, from (4) and writing u = (l + k)/(2Ip), every positive vector can be
decomposed according to the following expression

S =
1
2β
[
(1 + β) l + (1− β) k

]
(9)

where both k and l are null vectors with opposite projections in the 3-space
orthogonal to u. The physical meaning of (9) is clear because it reflects the well
known equivalence between a light beam having intensity I and polarization
degree β, and two incoherent streams of elliptically polarized light having inten-
sities I(1+β)/2 and I(1−β)/2 in the states of opposite polarizations (χ, Ψ) and
(−χ, Ψ+(π/2)). In particular, it is also suitable for the decomposition of natural
light, of intensity I, in two incoherent oppositely polarized waves with the same
intensity I/2. These waves can be linearly polarized and mutually perpendicular,
or circularly polarized with opposite helicities, one right-handed and the other
left-handed (cf. [1], [2]).

Also, the usual matrix representation of optical devices as polarizers and
retarders (Soleillet–Mueller matrices) has a Lorentzian meaning. Up to an overall
factor, they can be seen as elements of the proper orthochronous subgroup of
the Lorentz group acting on the Stokes space. Matrices representing polarizers
are homothetic to ordinary boosts, and retarders are represented as Euclidean
rotations, cf. [7], [13], [14], [15], [16].

3 Propagation of Polarized Radiation

Next, let us consider a one-parameter family of Stokes vectors S(λ) which, from
(1) and (8), can be written as

S(λ) =

⎛⎜⎜⎝
I

Iβl cos 2Ψ
Iβl sin 2Ψ
Iβc

⎞⎟⎟⎠ (10)

where every quantity in this expression depends on the real parameter λ, that
is, I(λ), βl(λ), βc(λ) and Ψ(λ). From (8), denoting with a prime the derivation
with respect to λ, we obtain

β′
l = (lnβ)′βl − 2χ′βc (11)

β′
c = 2χ′βl + (lnβ)′βc (12)
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Moreover, from (1) the polarization angle is given by

tan 2Ψ =
U

Q
=

u
q

(13)

and its derivative has the expression,

Ψ ′ =
u′q− q′u
2(u2 + q2)

(14)

So, we obtain the following relations that give the variations of the normalized
Stokes parameters with respect the parameter λ

q′ = −2Ψ ′u + β′
l cos 2Ψ (15)

u′ = 2Ψ ′q + β′
l sin 2Ψ (16)

v′ = β′
c (17)

Note that (q(λ), u(λ), v(λ)) is a parametrized curve in the domain bounded by
the Poincaré sphere, which is also an extended and well known representation for
light polarization [1]. So, (15), (16) and (17) give the velocity of a motion across
this domain which is represented by a smooth path or sequence of polarized
states. This equations provide the transport of Stokes parameters along a space–
time curve x(λ) under the fair hypothesis that these parameters vary smoothly
along the curve, S(x(λ)). In physical applications only causal curves (light rays
and observers) will be relevant.

In the kinetic theory of a relativistic gas on a given space–time geometry
[17], the relevant quantity is the particle distribution function f . For an unpo-
larized photon gas, the specific intensity I (at a given light frequency ν) and the
photon distribution function f are related by I = ν3f . In the polarized case,
the Stokes parameters SA(A = I,Q, U, V ) are defined for quasi-monochromatic
light and can also be seen as specific intensities for the given frequency. As a
conventional extension for polarized radiation, the distribution function fA as-
sociated with SA, can be defined as fA = SA/ν

3 (see, for instance, [18], [19]).
Units are taken so that h = c = 1. When unpolarized radiation is freely propa-
gating, the photon distribution function f is constant along each null geodesic,
that is, it must satisfy the collisionless Liouville equation Lf = 0. The effect
of the space–time geometry is involved in the Liouville operator L that repre-
sents a total derivative along the light trajectory x(λ). This operator acts on
the photon distribution function f as defined on the phase space for massless
particles, i.e. f

(
x(λ), k(λ)

)
, where k(λ) = dx(λ)/dλ is the photon 4-momentum,

and k2 = 0 in the given space–time metric, due to the photon masslessness.
When radiation is partially polarized the distribution functions fA

(
x(λ), k(λ)

)
associated with the Stokes parameters contain exhaustive information about po-
larization. In the unfreely propagating case, a source polarization term J enters
in the transfer equation for the total intensity, as expressed by the corresponding
Boltzmann-type equation LfI = J . The particular form of this term depends
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on the physical process under consideration (Thomson scattering, synchrotron
radiation, bremsstrahlung, etc.).

Now, we suppose that the Stokes parameters may vary smoothly along the
photon paths x(λ), so that we have a one-parameter family of Stokes vectors
S(x(λ)) on each path. Then (15), (16) and (17) are also suitable for this situation,
if the total derivative of the normalized Stokes parameters with respect to λ
is replaced by the Liouville derivation of the associated specific distribution
functions. Therefore, the actual form of this equations is

L
(fQ
fI

)
= −2Ψ ′ fU

fI
+ β′

l cos 2Ψ (18)

L
(fU
fI

)
= 2Ψ ′ fQ

fI
+ β′

l sin 2Ψ (19)

L
(fV
fI

)
= β′

c (20)

Hence, we have the following transfer equations for polarized radiation

LfI = J (21)

LfQ =
fQ
fI
J − 2Ψ ′ fU + β′

l fI cos 2Ψ (22)

LfU =
fU
fI
J + 2Ψ ′ fQ + β′

l fI sin 2Ψ (23)

LfV =
fV
fI
J + β′

c fI . (24)

For freely propagating photons the linear and circular polarization degrees are
assumed constant along each null geodesic. Specifically, from the above transfer
equations we arrive at the following result.

Proposition 2: In the free propagation of electromagnetic radiation, the neces-
sary and sufficient condition for the degrees of polarization to be constant along
each light ray, β′

l = β′
c = 0, is that the Stokes parameters distribution functions

satisfy the transport equations
LfI = 0 (25)

LfQ = −2Ψ ′fU (26)

LfU = 2Ψ ′fQ (27)

LfV = 0 (28)

where the prime denotes total derivation along the light ray.

Transport equations describing the free propagation of polarized electromag-
netic radiation in any space–time and in the geometrical optics approximation
were anticipated by Dautcourt and Rosen [10] and deduced by Bildhauer [11],
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[12] using Wigner distribution theory. From the above proposition, we can re-
cover the equations proposed by these authors when the transport of the polar-
ization angle is conveniently referred to an orthonormal tetrad {eA}3A=0 as will
be seen at once.

Let us consider a null geodesic with tangent vector k. Let us take eo = u an
arbitrary space–time observer and e3 = n the instantaneous spacelike unitary
vector along the light trajectory as measured by u. So, n = k/ν − u, where
ν = u · k is the observed light frequency. The space–time signature is taken
(+ − −−). The unitary vector e (polarization vector) along the major axis of
the polarization ellipse always stays on the 2-plane orthogonal to u and k; it is
determined up to a multiple of the null vector k and may be chosen

e = cosΨe1 + sinΨe2

Now the covariant derivative of e along k is given by

∇ke = (∇ke1 + Ψ ′e2) cosΨ + (∇ke2 − Ψ ′e1) sinΨ

Contracting the above expression with e1 and e2 it results

e1 · ∇ke = (e1 · ∇ke2 + Ψ ′) sinΨ

e2 · ∇ke = (e2 · ∇ke1 − Ψ ′) cosΨ

Then, according to [20], the polarization vector e is quasi-parallel transported
along the light beam, that is, the field ∇ke belongs to the (distribution of time-
like) 2-planes expanded by u and k if and only if the polarization angle varies
as

Ψ ′ = −e1 · ∇ke2 = e2 · ∇ke1 (29)

where the second equality also follows from the relation e1 ·e2 = 0. This condition
is satisfied in the geometrical optics approximation where, in particular, the
parallel transport of the polarization vector e along any light ray occurs, that
is ∇ke = 0. On the other hand, the covariant derivatives of the tetrad fields are
given by

∇eA
eB = ΓCBA eC

ΓCBA being the connexion coefficients. Now, from (29) taking into account that
k = ν(u + n) = ν(e0 + e1), the variation of the polarization angle may be
expressed as

Ψ ′ = ν(Γ 1
20 + Γ 1

23) = ν(Γ 2
10 + Γ 2

30) . (30)

The transport equations are expressed in the form obtained by Bildhauer [11]
when (30) is replaced in Proposition 2. Note the very simplicity of the arguments
we have used to obtain the general form for the transfer equations (21)–(24).
Starting from (25)–(28) and assuming the relation fA = SA/ν

3, the transfer
equations immediately follow.
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4 Comments and Discussion

We have considered the unusual Lorentzian interpretation of the Stokes vectors
and the degree of polarization (see (5) and Proposition 1). In this framework the
popular Stokes statement about lights [1], [2]: “Any partially polarized light may
be regarded as the incoherent mixture of an unpolarized light and a completely
polarized one”, has a direct geometric meaning (see (4)). It comes as a conse-
quence of the fact that any vector inside the positive shell of the null cone of a
Lorentzian structure (positive oriented vector) may be decomposed as the sum
of another positive oriented vector and a null vector with the same orientation
(positive intensity). In this sense, (9) refers to the incoherent decomposition of
a partially polarized light as two totally polarized lights with opposite polar-
izations. Moreover, the sum of positive and null vectors of the same orientation
always is a positive vector with the given orientation. This property reflects the
fact that any incoherent mixture of polarized beams of light may be represented
by a sole positive oriented Stokes vector.

On the other hand, the general form of transfer equations for polarized radi-
ation in curved space–times has been obtained considering the variation of the
Stokes parameters along a null curve, (21)–(24). For a given physical situation
(i.e. a specification of how the source term J depends on the distribution func-
tions fA ) each of the solutions of these equations provide an initial condition
for the general problem of free-propagating radiation in a curved background.
This propagation is governed by (25)–(28) when the linear and circular degrees
of polarization are constant along each ray. When the variation of the polariza-
tion angle is referred to an orthonormal tetrad, the transport equations are put
in Bildhauer’s form. In the geometrical optics approximation, the polarization
vector is parallely propagated along each ray. However, the rotation of the po-
larization vector with respect to a screen expanded by the tetrad fields e1 and
e2 must be taken into account whenever these fields are not parallel-transported
along the ray. These provide a sort of frame-dependent effect (which would be
called kinematic Faraday rotation) that needs to be controlled.

The above comment may be important in Relativistic Cosmology, in relation
to the challenge of measuring the polarization of the cosmic microwave back-
ground radiation (CMB). At the last scattering surface, the solutions of the
Boltzmann equation (with a Thomson collisional term) provide the initial con-
ditions for free propagating radiation in a perturbed Friedmann universe. The
election of an appropriate background geometry, since decoupling until now, and
the study of the transport equations in this geometry, are essential questions to
be analyzed in connection with the theoretical prediction of a polarized CMB.

Also, in astrophysical scenarios where a general relativistic treatment would
be necessary (propagation of polarized radiation through a magnetized plasma
[20], polarization from accretion disks near compact objects [21], etc.) the de-
tailed analysis of the transport equations describing the change of polarization
along a null geodesic in a given space–time ought to be considered. In a pioneer-
ing work, Plebański [22] investigated the rotation of the plane of polarization in
the gravitational field of an isolated system, considering the linearized approx-
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imation. The gravitational Faraday rotation has been investigated in the Kerr
geometry from the parallel transport of the polarization vector along its null
geodesics [21], [23] and also, considering the expression of the terms of the Bild-
hauer’s transport equations for this metric [12]. Because these equations follow
from the transport equations of Proposition 2, when the parallel transport of
the polarization vector is taken into account, both points of view seem to be
consistent.
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project AYA2000–2045.

References

1. M. Born and E. Wolf: Principles of Optics, 7th edn. (Cambridge University Press,
Cambridge 1999)

2. S. Chandrasekhar: Radiative Transfer (Dover 1960)
3. P. Soleillet: Ann. de Physique 12, 23 (1929)
4. F. Perrin: J. Chem. Phys. 10, 415 (1942)
5. R. Barakat: Opt. Comm. 38, 159 (1981)
6. C.V.M. van der Mee, J. W. Hovenier: J. Math. Phys. 33, 3574 (1992)
7. C.V.M. van der Mee: J. Math. Phys. 34, 5072 (1993)
8. D.I. Nagirner: Astron. Astrophys. 275, 318 (1993)
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Abstract. In this work we define and study a relation between Lorentzian manifolds
consisting on a diffeomorphism which maps causal future directed vectors onto causal
future directed vectors. These diffeomorphisms, called proper causal relations, contain
as a subset the well known group of conformal relations which can be characterized
as those diffeomorphisms such that both the transformation itself and its inverse are
proper causal relations. It turns out also that proper causal relations have a close
relation with the so called causal tensors which have received recently some attention
in a number of investigations. One of the main features of proper causal relations is
related with the concept of causal equivalence of Lorentzian manifolds which allows us
to define when two Lorentzian manifolds are causally indistinguishable despite having
different metric properties and this basically occurs when we can establish proper causal
relations in both ways between the manifolds.

Finally a new symmetry transformation of a Lorentzian manifold, derived from the
existence of proper causal transformations of the manifold, is defined, and some of its
mathematical properties investigated. We find that a mathematical structure known
as semigroup arises here quite naturally. Many examples are presented explicitly.

1 Basic Causal Relations

In this section the definitions of the basic concepts which will be used throughout
this work shall be presented. Before that, let us fix the basic notation. Differ-
entiable manifolds will be denoted by italic capital letters V . In this work all
such manifolds will be connected causally orientable Lorentzian manifolds of di-
mension n and hence there will exist a rank-2 tensor field gab(x) ∈ Cr(V ) with
r ≥ 2 defined on the whole manifold with Lorentzian signature. The signature
convention is set to (+ − . . .−). Tp(V ) and T ∗

p (V ) will stand respectively for
the tangent and cotangent space at the point p and T (V ) (resp. T ∗(V )) is the
tangent bundle (cotangent bundle) of the Lorentzian manifold V . Similarly the
bundle of j-contravariant and k-covariant tensors of V shall be denoted T jk (V ).
If ϕ is a diffeomorphism between the Lorentzian manifolds V and W , the push-
forward and pull-back shall be written as ϕ

′
and ϕ∗ respectively. The hyperbolic

structure of the Lorentzian scalar product naturally splits the elements of Tp(V )
into timelike, spacelike, and null. To make it clearer in what is to follow let us
introduce the sets:

Θ+(p) = {X ∈ Tp(V ) : X is causal future directed},
Θ(p) = Θ+(p) ∪Θ−(p),

L. Fernández-Jambrina, L.M. González-Romero (Eds.): LNP 617, pp. 315–329, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Θ+(V ) =
⋃
p∈V

Θ+(p)

with obvious definitions for Θ−(p), Θ−(V ) and Θ(V ). Before we proceed, we
need to introduce a further concept taken from [1].

Definition 1. A tensor Ti1...ir of T 0
r (p) satisfies the dominant property if for

every set k1, . . . ,kr of r causal future directed vectors in Tp(V ) we have that
Ti1...irk

i1
1 . . . k

ir
r ≥ 0.

The set of all r-tensors at p ∈ V which comply with the dominant property will
be denoted by DP+

r (p) whereas DP−
r (p) is the set of tensors such that −Ti1...ir

is in DP+
r (p). The set DPr(p) is the union of DP+

r (p) and DP−
r (p). All these

definitions extend straightforwardly to the bundle T 0
r (V ). So if U is an open

subset of V we may define the subsets DP+
r (U), DP−

r (U) and DPr(U) in the
following way:

DP±
r (U) =

⋃
p∈U

DP±
r (p), DPr(U) = DP+

r (U) ∪ DP−
r (U)

The simplest example, leaving aside the positive real numbers, for these concepts
are the causal 1-forms. It is trivial to realize that the causal 1-forms in an open
set U of the Lorentzian manifold V are sections of DP1(U), whereas the causal
future-directed and causal past-directed 1-forms are sections of DP+

1 (U) and
DP−

1 (U) respectively.
All these definitions extend trivially to tensor fields and we will use the above

notation also for such objects when the context clearly states what we are dealing
with. It should be clear that the dual elements of DP1(V ) are just the elements
of Θ(V ) which is sometimes referred to as the “Lorentzian cone field” of the
manifold V .

With the previous definitions we immediately realize the importance of hav-
ing some criteria which allow us to know whether a given tensor is in DP+

r . The
following is a necessary and sufficient condition for this to happen.

Proposition 1. A r-covariant tensor Ti1...ir is in DP+
r if and only if the com-

ponents of T in all orthonormal bases fulfill the relation T0...0 ≥ |Ti1...ir | where
the 0 index refers to the temporal component.

Proof : see [2]

With all this information at hand we can define when two Lorentzian mani-
folds will share in some way their causal structure.

Definition 2. Let V and W be two Lorentzian manifolds and ϕ : V → W a
global diffeomorphism between them. We shall say that W is (properly) causally
related with V at p ∈ V by ϕ if for every Xp of Θ(p) (Θ+(p)) we have that
(ϕ

′
X)ϕ(p) is also in Θ(ϕ(p)) (Θ+(ϕ(p))). W is said to be properly causally

related with V at p if there exists a diffeomorphism ϕ such that W is properly
causally related with V by ϕ.



Causal Transformations 317

Remarks

1. The previous definitions can also be given for an open set U of the manifold
V demanding that the causal relation holds at every point p of U . Moreover it
is possible to define the causal relation in the whole of V in a straightforward
way.

2. We must note that W may be causally related with V by a global diffeomor-
phism ϕ but fail to be causally related with the same manifold V if we choose
another diffeomorphism Ψ . Moreover it can happen that two given manifolds
fail to be proper causally related by all diffeomorphisms as we shall show later
with explicit examples.

3. The proper causal relation ofW with V by ϕ shall be written as V ≺ϕ W and
the same notation with the subscript ϕ dropped for the proper causal relation.

4. If we write g and g̃ for the Lorentzian metrics of V and W respectively and
use the relation:

g̃(ϕ
′
X, ϕ

′
Y ) = ϕ∗g̃(X,Y ) , (1)

we immediately realize that W is causally related with V if and only if ϕ∗g̃
satisfies the weak energy condition and V ≺ϕ W implies that ϕ∗g̃ ∈ DP+

2 (V ).
Conversely, if ϕ∗g̃ ∈ DP+

2 (V ), then for every X ∈ Θ+(V ) we have that
(ϕ∗g̃)(X,X) = g̃(ϕ

′
X, ϕ

′
X) ≥ 0 and hence ϕ

′
X ∈ Θ(W ). Therefore, in

order to have a proper causal relation of W with V we might need to change
the causal orientation of W which is always possible since we have assumed
that we are dealing with causally orientable manifolds. Thus the assertion
ϕ∗g̃ ∈ DP+

2 (V ) shall be taken henceforth as a characterization of a proper
causal relation of W with V .

In this work we will be mostly concerned with the case of proper causal relation
between Lorentzian manifolds because this concept tries to capture the notion
of some kind of relation between the causal structure of the manifolds V andW .

2 Mathematical Properties

Let us present next some of the most important mathematical properties of
proper causal relations. Our first result tell us how the causal character of vectors
changes under the application of a proper causal relation.

Proposition 2. Let V and W be two Lorentzian manifolds and suppose that
V ≺ϕ W . Then, the following assertions hold:

1. X ∈ Θ+(V ) is timelike =⇒ ϕ
′
X ∈ Θ+(W ) is timelike.

2. X ∈ Θ+(V ) and ϕ
′
X ∈ Θ+(W ) is null =⇒ X is null.

Proof : For the first implication, if X is a timelike element of Θ+(V ) we
have according to (1) that ϕ∗g̃(X,X) = g̃(ϕ

′
X, ϕ

′
X) which must be a strictly

positive quantity as ϕ∗g̃ ∈ DP+
2 (W ) and X is timelike [1]. For the second

implication, a new use of (1) leads us to the relation 0 = ϕ∗g̃(X,X) which is
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only possible if X is null since ϕ∗g̃ ∈ DP+
2 (V ) and X ∈ Θ+(V ) (see again [1]).

If a diffeomorphism ϕ between two Lorentzian manifolds is given we do not need
to check what the causal character of ϕ

′
X is for every element X of Θ+(V ) as

it is shown in the following result.

Proposition 3. The diffeomorphism ϕ : V → W sets a proper causal relation
between the Lorentzian manifolds V and W iff ϕ

′
X ∈ Θ+(W ) for all null X ∈

Θ+(V ).

Proof : According to the statement of this proposition and making use of (1)
we can write:

ϕ
′
X ∈ Θ+(W ) ∀X null in Θ+(V ) ⇔ ϕ∗g̃(X,Y ) ≥ 0 ∀ X,Y null in Θ+(V ) .

which happens if and only if ϕ∗g̃ is in DP+
2 (V ) and hence ϕ sets a causal relation

(see [1] property 2.4)

The next proposition tells us that the proper causal relation ≺ϕ is in fact a
transitive relation.

Proposition 4. If V , W and U are Lorentzian manifolds such that V ≺ϕ W
and W ≺ψ U , then V ≺ψ◦ϕ U .

Proof : Consider an arbitrary element X of Θ+(V ). Since V ≺ϕ W , ϕ
′
X ∈

Θ+(W ) and sinceW ≺ψ U we get ψ
′
[ϕ

′
X] ∈ Θ+(U) so that (ψ◦ϕ)

′
X ∈ Θ+(V )

from what we conclude that V ≺ψ◦ϕ W .

Therefore, we see that the relation ≺ is a preorder. Recall that a binary
relation ≺ defined in a set Σ is a preorder if it is transitive and reflexive. If in
addition, ≺ is also antisymmetric (x ≺ y and y ≺ x ⇒ y = x), then the binary
relation is a partial order. In our case this last condition fails because if we have
V ≺ϕ W and W ≺ψ V this does not imply that V = W . Nevertheless, if the
proper causal relation holds in both ways it will result in important consequences
as we can deduce by reading the neition.

Definition 3. Two Lorentzian manifolds V and W are called causally isomor-
phic if V ≺W and W ≺ V . This shall be written as V ∼W .

Thus we may expect that if V and W are causally isomorphic, then the causal
structure of both manifolds are somehow the same. In fact, the causal equiva-
lence of Lorentzian manifolds is the equivalence relation constructed from the
preorder ≺. It is a very well known fact that for a given partial order ≺ we can
define an equivalence relation as x ∼ y ⇔ x ≺ y and y ≺ x. In this way the
preorder ≺ gives rise to a partial order in the quotient set Σ/∼ by means of the
definition Coset(x) " Coset(y) ⇔ x ≺ y. Thus it is possible translate this whole
construction to equivalence classes of causally isomorphic Lorentzian manifolds.
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Roughly speaking we can say that if a diffeomorphism ϕ sets a causal relation
between two Lorentzian manifolds, then the light cone of a point of the first
manifold is applied by means of ϕ into the interior of the light cone of the image
point of the second manifold. However, it may happen that part of the boundary
of the initial cone remains on the boundary of the final cone by the application of
ϕ. In order to write down necessary and sufficient conditions for this to happen,
we need to establish first a preparatory lemma.

Lemma 4. If T ∈ DP+
2 (p) and X ∈ Θ+(p), then T(X,X) = 0 ⇐⇒ X is a

null eigenvector of T.

Proof : Let X ∈ Θ+(p) and assume 0 = T(X,X) = TabX
aXb. Then since

TabX
b ∈ DP+

1 (p) we can conclude that Xa and TabXb must be proportional
which results in Xa being a null eigenvector of Tab. The implication in the other
way is straightforward.

Proposition 5. Consider two Lorentzian manifolds V and W such that V ≺ϕ
W and suppose X is in Θ+(x). Then ϕ

′
X is null at ϕ(x) ∈W if and only if X

is a null eigenvector of ϕ∗g̃(x) at x ∈ V .

Proof : Let X be an element of Θ+(x) and suppose ϕ
′
X is null at ϕ(x). Then

according to proposition 2 X is also null at x. On the other hand we have:

0 = g̃(ϕ
′
X, ϕ

′
X) = ϕ∗g̃(X,X)

and since ϕ∗g̃|x ∈ DP+
2 (x) lemma 4 allows us to conclude that X is a null

eigenvector of ϕ∗g̃ at x.

This proposition provides a practical method to find out what part of the
boundary of the light cone is conserved under ϕ. It is worth remarking here
that the null eigenvectors may be used to classify all the elements of DP+

2 (V )
according to the next theorem [1]

Theorem 4. Every element Tab of DP+
2 (V ) may be written canonically as a

sum of rank-2 super-energy tensors Sab{Ω[r]} in the following way:

Tab =
n∑
r=1

Sab{Ω[r]} (2)

where each Ω[r] = k1 ∧ . . . ∧ kr is a simple r-form and the number of terms of
the sum and their structure are given according to the null eigenvectors of Tab; if
Tab has q linearly independent null eigenvectors k1, . . . , kq, then at least S{Ω[q]}
appears in the sum (2) with Ω[q] = k1 ∧ . . . ∧ kq and possibly those terms with
r ≥ q. If Tab has no null eigenvectors, then S{Ω[1]} appears in the sum and
possibly terms with r ≥ 1. In this last case Ω[1] is the timelike eigenvector of
Tab.
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Recall that for a given simple r-form Ω[r] we may define its associated super-
energy tensor by means of the formula [2]:

Tab{Ω[r]} =
(−1)r

(r − 1)!

[
Ωaa2...arΩ

a2...ar

b − 1
2r

(Ω ·Ω)gab

]
(3)

This canonical classification motivates the next definition

Definition 4. If the relation V ≺ϕ W holds, we shall say that W is m-related
with V if ϕ∗g̃ab(x) possesses m null eigenvectors ∀x ∈ V .

Therefore if W is m-related with V the equation

ϕ∗g̃abkb = αka, kb null element of Θ+(V ) (4)

allows us to calculate a set of null curves of V which are mapped onto null curves
in W . This set shall be called the canonical null directions of the relation ≺ϕ.
As a trivial result we have:

Proposition 6. If the relation V ≺ϕ W has n linearly independent canonical
null directions, then ϕ∗g̃ = λg

Proof : If there exist n independent canonical null directions, then ϕ∗g̃ has n
independent null eigenvectors which, according to theorem 4 is only possible if
ϕ∗g̃ is the super-energy tensor of a simple n-form being all of them proportional
to the metric tensor [1],[2].
Proposition 6 has an interesting application in the following lemma.

Lemma 5. Suppose V and W are Lorentzian manifolds and assume there ex-
ists a diffeomorphism ϕ : V → W such that ϕ∗g̃ ∈ DP+

2 (V ) and (ϕ−1)∗g ∈
DP+

2 (W ). Then we have that ϕ∗g̃ = λg and (ϕ−1)∗g = g̃/(ϕ−1)∗λ for some
positive function λ defined in V .

Proof : Under the hypotheses of this lemma we may establish the following
assertions (see proposition 2):

ϕ
′
X ∈ Θ+(W ) null and X ∈ Θ+(V ) =⇒ X is null

(ϕ−1)
′
Y ∈ Θ+(V ) null and Y ∈ Θ+(W ) =⇒ Y is null

Now, let X be an arbitrary null element of Θ+(V ) and consider the only Y of
T (V ) such that X = (ϕ−1)

′
Y which exists because (ϕ−1)

′
is an isomorphism.

Then Y = ϕ
′
X and Y ∈ Θ+(W ) as X is in Θ+(V ) and ϕ sets a proper causal

relation. Therefore according to the second assertion above Y must be null and
we conclude that every null X of Θ+(V ) is push-forwarded to a null element of
Θ+(W ) which in turn implies that ϕ∗g̃ = λg. In a similar fashion, we can prove
that (ϕ−1)∗g = μg̃ and hence μ = 1/(ϕ−1)∗λ.

Remark. Note that this lemma implies that V ≺ϕ W and W ≺ϕ−1 V holds if
and only if ϕ is a conformal relation. Thus, if ϕ : V →W is a conformal relation,
then V ∼W .
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3 Applications to Causality Theory

In this section we will perform a detailed study of how two Lorentzian manifolds
V and W such that V ≺ϕ W share common causal features. To begin with, let
us recall the basic sets used in causality theory. If p and q are given points of a
Lorentzian manifold V we shall write p < q if there exists a continuous future
directed causal curve joining p and q and p << q if such a curve is a timelike
continuous future directed one. Then the chronological and causal future of a
point p are defined as follows [4]:

I+(p) = {x ∈ V : x >> p} , J+(p) = {x ∈ V : x > p} .

And dually for the past. These definitions are translated in an obvious way to
arbitrary sets of V and so we write I±(A) and J±(A) for a set A ⊆ V . Other
important concepts are that of future sets and achronal boundaries [4]. A set
A is said to be a future set if I+(A) ⊆ A. For example I+(A) is always a
future set. The set B is achronal if B ∩ I+(B) = ∅ and B shall be called an
achronal boundary if B is the boundary of a future set. (The boundary of a
future set is always achronal)1. Due to the connectedness of the manifold V we
may decompose it disjointly as V = B+ ∪ B ∪ B− where B+ is the future set of
which B is boundary and B− = ext B+ is a past set. All these definitions remain
the same if we change future by past (see [3] for more details). Finally we must
also recall what are the definitions of future and past Cauchy developments for
a given set A. Let γ±

p be a future (past) causal curve which contains the point
p and denote by Γ±

p the set of such curves. The future Cauchy development of
A is defined as follows [4]:

D+(A) = {x ∈ V : γ−
x ∩A �= ∅ ∀γ−

x ∈ Γ−
x }

and a similar definition for D−(A). The Cauchy development of A is given by
D(A) = D+(A)∪D−(A). It is also possible to define the future Cauchy horizon
for A:

H+(A) = {x ∈ D+(A) : ∀p ∈ D+(A) x �� p}
Next, we shall prove a number of propositions which show the behaviour of

these sets under the application of a proper causal relation between Lorentzian
manifolds.

Proposition 7. If V and W are such that V ≺ϕ W , then for every set U ⊂ V
the assertions ϕ(I±(U)) ⊆ I±(ϕ(U)) and ϕ(J±(U)) ⊆ J±(ϕ(U)) hold.

Proof : It is enough to prove it for a single point p ∈ V and then use this
to obtain the result for every set just by considering it as union of such points.
For the first relation, let x be in ϕ(I+(p)) arbitrary and y ∈ I+(p) such that
ϕ(y) = x. Thus since y � p we may choose a timelike curve γ joining p and
1 Sometimes these sets are referred to as proper achronal boundaries to distinguish

them from achronal sets which are the boundary of non-future sets [5],[3].
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y and therefore ϕ(γ) is a timelike curve joining ϕ(p) and x (see proposition 2)
which implies that x is in I+(ϕ(p)). The second assertion is proven in a similar
way bearing in mind that the image of a future directed causal curve by ϕ is
also a future directed causal curve (see again proposition 2). The proof for the
past sets is the same as for the future sets.

This proposition has a partial converse.

Proposition 8. Let ϕ : V → W be a diffeomorphism with the property ∀p ∈ V
ϕ(I+(p)) ⊆ I+(ϕ(p)). Then ϕ is a proper causal relation.

Proof : From the statement of the proposition it is clear that if p, q of V are
such that p q, then ϕ(p)  ϕ(q). This immediately implies that every future
directed timelike curve γ ⊂ V goes to a future directed timelike curve ϕ(γ) ⊂W
which is only possible if every timelike future directed vector transforms into
a future timelike vector. As a consequence if k is a null vector ϕ

′
k must be

a causal vector (to see it just construct a sequence of timelike future directed
vectors converging to k) which proves that ϕ is a proper causal relation.

These results have some relevant consequences. For instance they forbid the
existence of proper causal relations between certain manifolds.

Proposition 9. Suppose that every inextendible causal future directed curve in
W has a particle horizon. Then any V such that V ≺W cannot have inextendible
causal curves without particle horizons. The same holds true by replacing future
directed with past directed.

Proof : If there were a future directed causal curve γ in V without particle
horizon, then I−(γ) would be the whole of V . But according to the previous
proposition ϕ(I−(γ)) ⊆ I−(ϕ(γ)) from what we would conclude that I−(γ) =W
against the assumption.

We will perform a careful study about how future and past sets transform
under a proper causal relation. From now on we will concentrate in future sets
but all the statements are the same for past sets. As we shall prove, the trans-
formation law of future sets characterize proper causal relations.

Before going further on we must introduce some concepts. If p is a point of a
Lorentzian manifold V we can introduce normal coordinates in a neighbourhood
of p which shall be denoted by Np [3]. In addition it is also possible to define a
diffeomorphism exp : O ⊂ Tp(V ) → Np where O is an open neighbourhood of
0 ∈ Tp(V ). The interior of the future (past) light cone, C±

p , is given by:

C±
p = exp(int(Θ±(p)) ∩O)

This open set is a local translation to the manifold V of the properties of the
Lorentzian cone. The property needed here is that C±

p ⊆ I±(p). See [3] for
further properties of normal coordinates and the mathematical constructions
derived from them.

Lemma 6. If A is a future set, then p ∈ A⇐⇒ I+(p) ⊆ A.
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Proof : Suppose I+(p) ⊆ A. Then since C+
p ⊂ I+(p) and p ∈ C+

p we have
that Up ∩ C+

p �= ∅ for every neighbourhood Up of p which in turn implies that
Up ∩ A �= ∅ and hence p ∈ A. Conversely let p be any point of A and consider
a point q ∈ I+(p). The open set I−(q) is a neighbourhood of p and thus has a
nonempty intersection with A which means that there exists a point z such that
q � z and z ∈ A. Hence q ∈ A because A is a future set and this allows us to
conclude that I+(p) ⊆ A.

We are now ready for the formulation of one of the key results of this work.

Theorem 5. A diffeomorphism ϕ : V → W is a proper causal relation if and
only if ϕ−1(A) is a future set for every future set A ⊆W .

Proof : Suppose A ⊂W is a future set and define ϕ−1(A) in the standard way.
By applying proposition 7 we may write ϕ(I+(ϕ−1(A))) ⊆ I+(ϕ(ϕ−1(A))) =
I+(A) ⊆ A which shows that I+(ϕ−1(A)) ⊆ ϕ−1(A). Conversely take for any
p ∈ V the future set I+(ϕ(p)) and consider the future set ϕ−1(I+(ϕ(p))). Since
ϕ(p) ∈ I+(ϕ(p)) we deduce that p ∈ ϕ−1(I+(ϕ(p))) and according to lemma
6 I+(p) ⊆ ϕ−1(I+(ϕ(p))) ⇒ ϕ(I+(p)) ⊆ I+(ϕ(p)). Under this last condition,
proposition 8 ensures that ϕ is a proper causal relation.

This theorem has important consequences as we can see below.

Proposition 10. Let V and W be Lorentzian manifolds and assume they are
causally equivalent. Then there is a one-to-one correspondence between the future
and past sets of each manifold.

Proof : If V ∼W , then V ≺ϕ W and W≺ΨV for some diffeomorphisms ϕ and
Ψ . By denoting with FV and FW the set of future sets of V and W respectively,
we have that ϕ−1(FW ) ⊆ FV and Ψ−1(FV ) ⊆ FW . Since ϕ and Ψ are both bi-
jective maps we conclude that FV is in one-to-one correspondence with a subset
of FW and vice versa which according to the equivalence theorem of Bernstein
[6] only happens if FV is in one-to-one correspondence with FW .

The achronal boundaries satisfy the following interesting property under the
application of a proper causal transformation.

Proposition 11. If B ⊆ W is an achronal boundary and ϕ : V → W a proper
causal relation, then ϕ−1(B) is also an achronal boundary.

Proof : If B ⊂W is an achronal boundary then by definition there is a future
set B+ such that B = ∂B+. Hence, since ϕ is a diffeomorphism we have the
relation ϕ−1(B) = ϕ−1(∂B+) = ∂(ϕ−1(B+)) which shows that ϕ−1(B) is the
achronal boundary of the future set ϕ−1(B+).

The results for the Cauchy developments are the following:

Proposition 12. IfW is proper causally related with V by ϕ, then D±(ϕ(A)) ⊆
ϕ(D±(A)) for every set A ⊆ V .
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Proof : It is enough to perform the proof for the future case. Let x ∈ D+(ϕ(A))
arbitrary and consider any causal past directed curve γ−

ϕ−1(x) ⊂ V containing
ϕ−1(x). Since the image curve by ϕ of γ−

ϕ−1(x) is a causal curve passing through
x, ergo meeting ϕ(A), we have that γ−

ϕ−1(x) must meet A from what we conclude
that x ∈ ϕ(D+(A)) due to the arbitrariness of γ−

ϕ−1(x).

Corollary 4. If Σ ⊂W is a Cauchy hypersurface of W , then ϕ−1(Σ) is also a
Cauchy hypersurface of V .

Proof : By using the previous proposition we get D(Σ) ⊆ ϕ(D(ϕ−1Σ)).
So if Σ is a Cauchy hypersurface of W , then D(Σ) = W and since ϕ is a
diffeomorphism we obtain at once the desired result.

4 Causal Transformations

In this section we shall show how the concepts previously developed are applied
in a natural generalization of the well known group of conformal transformations
which will also allow us to define a new kind of symmetry. To start with let us
present the definition of causal transformation.

Definition 5. We shall say that a diffeomorphism ϕ : V −→ V is a causal
transformation if it sets a proper causal relation of V with itself.

The set of causal transformations of the given manifold V will be denoted by
C(V ). This is a subset of the group of diffeomorphisms of V and from this
definition and proposition 4 it is evident that the composition of causal trans-
formations is also a causal transformation. Nonetheless C(V ) may fail to be a
group although if we find a subgroup of C(V ), then we can say what kind of
transformations build it.

Proposition 13. Every subgroup of causal transformations is a group of con-
formal transformations.

Proof : Let G ⊆ C(V ) be a subgroup of causal transformations and consider
any element ϕ of G. Then since both ϕ and ϕ−1 are causal transformations, use
of lemma 5 allows us to conclude that ϕ is a conformal transformation.

The causal transformations which are not conformal transformations will be
called proper causal transformations.

The set C(V ) is closed under the composition of diffeomorphisms and the
identity map Id : V → V belongs also to C(V ). This algebraic structure is
known in Mathematics as shown in the following definition [7].

Definition 6. A subset S of a group G is a subsemigroup if it is closed under
multiplication, i.e. S · S ⊆ S. If in addition the neutral element e is in S, then
it is called a submonoid.
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Therefore we deduce from this definition that C(V ) is a submonoid of the group
of diffeomorphisms of the manifold V . We shall say that C(V ) is proper if it is not
a group which means that ∃ϕ ∈ C(V ) which is not a conformal transformation.
In order to gain more acquaintance with subsemigroups we will write next some
straightforward properties of such sets.

Theorem 6. For a subsemigroup S ⊆ G the following assertions hold:

1. The set S ∩S−1 is a maximal subgroup of S which is called the group of units.
2. We may define a preorder in G associated to S and denoted by ≺S by means

of the relation x ≺S y ⇔ x−1 · y ∈ S.
3. Conversely if a given group G has a preorder ≺ defined between its elements,

the set:
S≺ = {g ∈ G : e ≺ g}

is a subsemigroup of the group G. Furthermore, the relation ≺S≺=≺ holds.

Proof : see [7]
Hence in our case we see that C(V ) ∩ C(V )−1 is just the group of conformal

transformations of the manifold V and there is no other subgroup of C(V ) which
contains C(V ) ∩ C(V )−1.

Now, we may ask ourselves if we can find vector fields which in some sense are
infinitesimal generators of a given set of transformations C(V ) in a similar way
as it is done for other well known groups of transformations. To accomplish such
a task, it will be useful to consider one-parameter groups of diffeomorphisms
with precise properties. For instance, if {ϕs}s∈R is a one-parameter group of
diffeomorphisms and we want it to be a group of causal transformations, we
already know that the only possibility is that {ϕs} is in fact a group of confor-
mal transformations. On the other hand, things are more subtle if there are no
conformal transformations in the family {ϕs} other than the identity Id.

Proposition 14. Let {ϕs} be a one-parameter group of diffeomorphisms of V
and suppose that ϕs is not a conformal transformation for any value of t other
than s = 0. If in addition A± = {ϕs}s∈R± ⊂ C(V ), then there is no other subset
of {ϕs} which contains A± and at the same time is in C(V ).

Proof : Under the hypotheses of this proposition let us call B a possible subset
of {ϕs} with A+ ⊂ B (we take A+ but the proof remain the same for A−).
Then we may write B as {ϕs}s∈I where I is an interval of the real line which
contains the positive real line and some negative values. If we pick one of these
negative values s0 we have that both ϕs0 and ϕ−s0 = ϕ−1

s0 are in C(V ) which
only is possible if ϕ−s0 ∈ A is a conformal transformation contradicting one of
the hypotheses of the proposition.
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5 Examples

Example 1 (Einstein Static Universe and de Sitter Universe).

Let us take (V,g) as the Einstein static universe and (W, g̃) as de Sitter space-
time. Both spacetimes are the manifold IR×S3 and hence they are diffeomorphic.
By proposition 9 we have that V �≺ W because every causal curve in de Sitter
spacetime possesses a particle horizon. However, the proper causal relation in
the opposite way does hold as it can be shown by constructing it explicitly. The
line element of each spacetime reads as:

V : ds2 = dt2 − a2(dχ2 + sin2 χdΩ2)
W : ds̃2 = dt̄2 − α2 cosh2(t̄/α)(dχ̄2 + sin2 χ̄dΩ2)

where χ, θ, ϕ (and their barred versions) are standard coordinates in S3 and a, α
are constants. The diffeomorphism ϕ : W → V is given by the relation χ = χ̄,
t = bt̄, for a constant b. The value of ϕ∗g in a suitable orthonormal basis of W
is:

(ϕ∗g)abdxadxb = b2θ0
2 − a2

α2 cosh2(t̄/α)
[θ1

2
+ θ2

2
+ θ3

2
] (5)

which by using proposition 1 shows that ϕ∗g ∈ DP+
2 (W ) if b2 ≥ a2/α2 and

therefore ϕ sets a proper causal relation for these values of b.

Example 2 (Minkowski and Static Part of de Sitter Spacetime).

In our next example we shall present two spacetimes causally isomorphic in
the sense of definition 3. The spacetime (V,g) will be the ordinary Minkowski
spacetime and the second spacetime denoted by (W, g̃) consists of one of the
static regions of de Sitter spacetime and is given by the line element:

ds2 =
(

1− r
2

α2

)
dt2 − dr2

(1− r2/α2)
− r2(dθ2 + sin2 θdϕ2) ,

0 < r < α, 0 < θ < π, 0 < ϕ < 2π

where these coordinates cover just one fourth of the whole de Sitter spacetime
(see Fig. 1).

If we take standard spherical coordinates T,R, θ, ϕ in Minkowski spacetime,
the diffeomorphisms which set the causal equivalence read as:

ϕ : V →W r =
αβR

1 + βR

(ϕ∗g̃)abdxadxb =
1

(1 + βR)2

[
(1 + 2βR)θ0

2 − α2β2

1 + 2βR
θ1

2 − α2β2(θ2
2
+ θ3

2
)
]

Ψ :W → V R = −b · r · log | r
α
− 1| , b > 0

(Ψ∗g)abdxadxb =
θ̃0

2

1− r2/α2 −
(

1− r
2

α2

)
f

′2(r)θ̃1
2 − f(r)

2

r2
(θ̃2

2
+ θ̃3

2
)
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+

III

III

IV

χ=0

r=

r=

r=

r=

α α

α α

− χ=π

Fig. 1. Penrose diagram of de Sitter spacetime. We have shown the static regions I and
II and the non-static ones III and IV. The coordinates of (5) cover one of the static
regions

where {θa} and {θ̃a} are orthonormal cobases in each spacetime given by:

θ0 =

√
1− r

2

α2 dt , θ1 =
dr√

1− r2

α2

, θ2 = rdθ , θ3 = r sin θdϕ ,

θ̃0 = dT , θ̃1 = dR , θ̃2 = Rdθ , θ̃3 = R sin θdϕ.

This shows that ϕ∗g̃ ∈ DP+
2 (V ) if β2 ≤ 1

α2 and Ψ∗g ∈ DP+
2 (W ) if

1
1− r2/α2 ≥

(
1− r

2

α

)
f

′2(r) ,
1

1− r2/α2 ≥
f(r)2

r2

being this last condition fulfilled if we arrange b appropriately.

Example 3.

Consider the following manifolds:

(V,g) = region of Minkowski with R > a in spherical coordinates
(Wc, g̃) = outer region of Schwarzschild spacetime with r > c ≥ 2M

in Schwarzschild coordinates

and define the diffeomorphism ϕ : V →Wc given by r = R− a+ c, t = b · T for
an appropriate positive constant b. The line element associated to ϕ∗g̃ is:

(ϕ∗g̃)abdxadxb

= b2dT 2
(

1− 2M
R− a+ c

)
− dR2

1− 2M/R− a+ c
−R2

(
R− a+ c

R

)2

dΩ2. (6)

Thus if ϕ∗g̃ is to be in DP+
2 (V ) the following inequalities must be satisfied:

a2
(

1− 2M
R− a+ c

)
≥ 1

1− 2M/(R− a+ c)
,
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a2
(

1− 2M
R− a+ c

)
≥
(
R− a+ c

R

)2

. (7)

This is feasible for every c > 2M . For c = 2M we have that ϕ fails to be a
proper causal relation. Actually V �≺ W due to corollary 4 as W2M is globally
hyperbolic but V is not. Now, take the diffeomorphism Ψ : Wc → V defined
by means of the transformation T = t, R = r, θ̄ = θ, ϕ̄ = ϕ where θ̄ and ϕ̄
are spherical coordinates in V and the coordinates without bar refer to the Wc

spacetime. The pull-backed metric tensor Ψ∗g is given by:

(Ψ∗g)abdxadxb = dt2 − dr2 − r2dΩ̄2

=
1

1− 2M/r
θ̃0

2 −
(

1− 2M
r

)
θ̃1

2 − θ̃22 − θ̃32

where

θ̃0 =

√
1− 2M

r
dt , θ̃1 =

dr√
1− 2M/r

, θ̃2 = rdθ , θ̃3 = r sin θdϕ .

From (8) we immediately deduce that Ψ∗g ∈ DP+
2 (V ) for every c ≥ 2M as

long as a ≥ 2M . The conclusion of all this reasoning is that Wc ∼ V if c >
2M . This is quite interesting because we are able to put in correspondence two
Lorentzian manifolds which otherwise are rather different and by no means can
be related in a straightforward way with ordinary procedures. Thus, this sort of
relations might open the door to a possible definition of a concept of asymptotic
equivalence of spacetimes in a coordinate-free manner.

Example 4 (Friedmann-Robertson-Walker Universe).

Let us show next an example of causal transformation. Consider the Friedmann-
Robertson-Walker models whose line element is given by:

ds̃2 = dt2 − a2(t)(dχ2 + f2(χ)dΩ2)

and define the one-parameter group of diffeomorphisms ϕs : t → t − s. The
pull-back of the metric tensor g is given by:

(ϕ∗
sg)abdxadxb = dt2 − a2(t− s)(dχ2 + f2(χ)dΩ2)

= θ0
2 − a

2(t− s)
a2(t)

(
θ1

2
+ θ2

2
+ θ3

2
)

where in the last step we have written ϕ∗
sg in terms of the orthonormal tetrad

θ0 = dt , θ1 = a(t)dχ , θ2 = a(t)f(χ)dθ , θ3 = a(t)f(χ) sin θdϕ. We readily
see that ϕ∗

sg ∈ DP+
2 (V ) ∀s ≥ 0 iff a(t− s) ≤ a(t) (expanding model) or ϕ∗

sg ∈
DP+

2 (V ) ∀s ≤ 0 iff a(t−s) ≤ a(t) (contracting model). Thus we must have either
an expanding or a contracting universe if a semigroup of causal transformations
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is to be defined in the spacetime. Clearly u = ∂/∂t is the infinitesimal generator
of {ϕs} and it satisfies the differential equation:

d
ds

(ϕ∗
sg)|s=0 ≡ £(u)gab = 2

ȧ(t)
a(t)

(gab − uaub) = 2
ȧ(t)
a(t)

Pab (8)

where Pab is the orthogonal projector onto the hypersurfaces t =const.

6 Conclusions

In this work a new relation between Lorentzian manifolds has been introduced
and its mathematical properties thoroughly investigated. The main feature of
this transformations relies in the fact that it allows us to decide when two very
different Lorentzian manifolds are causally indistinguishable which is equivalent
to say that it is possible to put in one-to-one correspondence the future (resp.
past) sets of both manifolds. As an interesting application of this we may quote
that we could study the global causal properties of a given unknown spacetime if
we were able to causally compare it with another yet known spacetime since our
method has full generality. Finally, with the aid of the concept of causal relation,
a new symmetry transformation of a spacetime (V,g) is defined. This symmetry
does not give rise to a group but a mathematical structure known as semigroup.
The physical or mathematical relevance of this symmetry transformation is now
under current research.
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TELEPENSOUTH Project:
Measurement of the Earth Gravitomagnetic
Field in a Terrestrial Laboratory

José Fernando Pascual-Sánchez

Dept. Matemática Aplicada Fundamental, Sección Facultad de Ciencias,
Universidad de Valladolid, 47005, Valladolid, Spain

Abstract. We will expose a preliminary study on the feasibility of an experiment lead-
ing to a direct measurement of the gravitomagnetic field generated by the rotational
motion of the Earth. This measurement would be achieved by means of an appropri-
ate coupling of a TELEscope and a Foucault PENdulum in a laboratory on ground,
preferably at the SOUTH pole. An experiment of this kind was firstly proposed by
Braginski, Polnarev and Thorne, 18 years ago, but it was never re-analyzed.

1 Introduction

The search for measurable effects of a gravitational field due to the angular
momentum of the source, within the framework of General Relativity (GR),
continues. In the weak and slow motion approximation of GR, the gravitomag-
netic part of the gravitational potential gives rise to the Lense-Thirring effect
[1]. The actual detection of this effect is entrusted both to Earth satellites ex-
periments and to Earth based laboratory experiments. So far, the only positive
indirect result concerns an experiment of the first kind, the precession of the
nodes of the orbit of the LAGEOS satellite [2].

On the other hand, in the next years the space mission Gravity Probe B
(GPB) is planned to fly, carrying gyroscopes which should verify the Lense-
Thirring precession effect directly [3],[4]. Moreover, different possibilities con-
nected both with the clock effect and the gravitational Sagnac effect have been
considered [5],[6].

Recently, after the completion of this work, a Earth based laboratory ex-
periment to test directly the quadratic terms in the angular momentum of a
gravitational potential, has been proposed by Tartaglia (see [7]). This proposal
deserves further study. However, in what follows, I will remind a different Earth
based laboratory experiment to test directly the Lense-Thirring effect, which
was firstly proposed by Braginski, Polnarev and Thorne, 18 years ago [8], but
never reconsidered or re-analyzed.

L. Fernández-Jambrina, L.M. González-Romero (Eds.): LNP 617, pp. 330–336, 2003.
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2 Gravitomagnetic Maxwell-Like Equations

First at all, we give a fast review of the well-known linear and slow motion
approximation of GR. Our starting point will be the Einstein field equations:

Rab −
1
2
gabR = −8πG

c4
Tab . (1)

If the gravitational field is weak, then the metric tensor can be approximated by

gab � ηab + hab , (2)

where ηab is the flat Minkowski spacetime metric. Now define the gravitational
potentials as

hab = hab −
1
2
ηab h . (3)

The analogy with Maxwell-Lorentz electrodynamics can be made explicit by
writing the linear gravitational equations in terms of first-order derivatives of
the gravitational potential, i.e., acceleration fields. With this aim in view, we
first introduce the object

Gabc =
1
4
(
h ab,c − h ac,b + ηab h cd ,d − ηac h bd ,d

)
. (4)

and impose the four harmonic de Donder gauge conditions:

h ab ,b = 0 . (5)

From (4) and (5) reads:

Gabc =
1
4
(
h ab,c − h ac,b

)
, (6)

and retaining only linear terms, one obtains the weak field equations in terms of
the objectGabc, in which only first-order derivatives of the gravitational potential
occur:

∂Gabc

∂xc
= −4πG

c4
T ab . (7)

After defining the gravitoelectric Newtonian scalar potential Φ and the gravito-
magnetic vector potential a as

Φ := −c
2 h 00

4
(8)

ai :=
c2 h 0i

4
a =

(
a1, a2, a3

)
, (9)

let us introduce new symbols and substitute (8) and (9) into (6), to get the
gravitoelectric Newtonian field g as

g = −∇Φ− 1
c

∂a
∂t
, (10)
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where

gi = c2G00i = − ∂Φ
∂xi

− 1
c

∂ai

∂t
, (11)

and
G00i =

1
4
(
h 00,i − h 0i,0) , (12)

and to get the gravitomagnetic field b as

b = ∇∧ a , c2G0ij = ai,j − aj,i ,
b = (b1, b2, b3) , b1 = c2G023 , b2 = c2G031 , b3 = c2 G012 . (13)

Now, performing the first order slow motion approximation for the energy mo-
mentum tensor we neglect quadratic terms in velocity, i.e., neglect the stress
part of the energy-momentum tensor. Thus, the energy-momentum tensor will
only have the components

T 00 = �c2 (14)

and
T 0i = �cvi . (15)

Thus, when the first order effects of the motion of the sources are taken into
account, one arrives at the following gravitomagnetic (Maxwell-like) equations
[9]:

∇g = −4πG� , (16)
∇b = 0 , (17)

∇∧ g = −1
c

∂b
∂t
, (18)

∇∧ b = −4πG
c
�v +

1
c

∂g
∂t
. (19)

For a weak stationary gravity field, from the geodesic equation

d2xa

dτ2 + Γ abc
dxb

dτ
dxc

dτ
= 0 , (20)

one obtains the Lorentz-like force law, reads

du
dt

= g +
4
c
u ∧ b , (21)

where u is the velocity of the test particle.

3 Lense-Thirring Precession on a Spin

For a weak stationary field the gravitomagnetic potential is

a = −1
2
G

c

J ∧ r
r3

, (22)
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and the gravitomagnetic field

b = ∇∧ a = −1
2
G

c

3n (J · n)− J
r3

(23)

where J is the intrinsic angular momentum of the source and n is the unit posi-
tion vector. These equations are analogous to the magnetostatic ones, replacing
the magnetic dipole moment by minus half the angular momentum.

For an arbitrary accelerated observer in a gravitational field with 4-velocity
ua = dxa/dτ and 4-acceleration aa = Dua/dτ , the equation of motion for the
torque-free point-like 4-spin vector is given by the Fermi-Walker transport law

dSa

dτ
+ Γ ab c u

bSc = uaadSd , (24)

where the 4-spin vector Sa is constrained by the condition

uaS
a = 0 , (25)

which assures that the length of the 3-spin vector S does not change as measured
by an observer comoving with the spinning particle. The total precession of the
3-spin vector with respect to an asymptotic inertial frame given by a “fixed
star” trained on by a telescope, whose associated tetrad realizes Frenet-Serret
transport, is given by the equation

dS
dt

= Ω ∧ S . (26)

The general expression for the spin precession rate in the Lense-Thirring
metric (Schiff formula) contains three terms

Ω = ΩTh + Ωgeo + ΩLT , (27)

where
ΩTh =

1
2c2

a ∧ u , (28)

and
Ωgeo =

3
2
G

c2
M

r2
n ∧ u =

3
2 c2

u ∧ g . (29)

Only the Thomas precession ΩTh would be present for accelerated motion in a
flat Minkowski spacetime. Both geodetic Ωgeo and Thomas ΩTh precessions are
present for accelerated motion in Schwarzschild geometry, but only the geodetic
Ωgeo remains, in the case of free fall (a = 0) motion. Moreover, the geodetic de
Sitter-Fokker precession Ωgeo, due to the mass M , is in the same sense as the
orbital motion.

The additional Lense-Thirring gravitomagnetic precession effect ΩLT, due to
the angular momentum J of the source, is manifested in a Kerr spacetime [10]
or in its weak field and slow motion approximation (the Lense-Thirring metric
[11]), in which the Lense-Thirring precession rate ΩLT is

ΩLT = −2
c

b =
G

c2
3n (J · n)− J

r3
(30)
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3.1 Particular Cases of the Schiff Formula

(1) Free fall gyroscopes in Earth’s orbit (GP-B experiment).
As a = 0 and u �= 0, then ΩTh = 0 and only two terms survive,

Ω = Ωgeo + ΩLT (31)

This formula is used in the GP-B gyroscope (Stanford) experiment to obtain the
precession, due to stationary gravitomagnetic b field generated by the rotation
of the Earth mass, with respect to an asymptotic inertial frame given by the
“fixed star” TM Pegasus.

(2) Gyroscope at rest on Earth (except at the poles).
In this case, a = −g, hence

Ω = ΩTh + Ωgeo + ΩLT (32)

with ΩTh + Ωgeo = 2
c2 u ∧ g ,

(3) Gyroscope or Foucault pendulum at rest on Earth at a pole (South).
As u = 0, then only the Lense-Thirring term remains

Ω = ΩLT . (33)

Hence, this last is the clean experiment because one has the GM precession only,
without competing geodetic or Thomas effects. Moreover, the magnitude of ΩLT
is five times larger in this last case (220 mas/year) than in the GP-B experiment
(42 mas/year).

4 TELEPENSOUTH Experimental Apparatus

The experimental apparatus would consist of a Foucault pendulum and an as-
trometric telescope in a underground vacuum chamber. To avoid the classical
Foucault effect, due to the Earth’s rotation, it is necessary to operate just in the
South pole.

Furthermore, another reason for using a Foucault pendulum instead of a
gyroscope is due to the required sensitivity compared to the Earth rotation rate:
ΩLT = dΦ/dt ≈ 5.10−10 ω⊕.

The telescope must have its optical axis locked to the azimuth of a “fixed”
star, which is an approximate asymptotic inertial frame.

The pendulum swinging fiber is used as a light pipe and the mass as a lens to
focus a swinging light beam onto an optical system, which monitors the angle Φ
between the principal axis of the pendulum and the telescope and the ellipticity
of the swing ε.
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4.1 Sources of Error of the Experiment

For the sake of completeness, we give here a summary of the sources of error of
the experiment, which has been mainly extracted from the original work [8]. For
a two-month experiment, 10 % of accuracy requires a precision of δΦ = 4 mas.

(A) For the pendulum, two different kinds of error :
(1) Velocity dependent forces: Gravitomagnetic (to measure), magnetic, an-

iso-tropic frictional damping, Pippard precession.
Effect: Change of the principal axis direction Φ, no change in ε.

(2) Position dependent forces orthogonal to the principal axis of the pendu-
lum: frequency anisotropy, seismic displacements of the support.
Effect: First order change in ε, second order in Φ.

(B) For the telescope, the errors come from:
(1) Atmospheric refraction.
(2) Distortion.
(3) Tilts of the mirror.

4.2 Control of the Sources of Error of the Pendulum

(1) Velocity dependent forces:
(a) Against magnetic forces: Coat the mass and the fiber with metal.
(b) Against anisotropic frictional damping: pendulum support held fixed rel-

ative to the Earth. Conclusion: Sapphire fiber with diameter d = 0.1 mm and
mass, M = 100 gr.

(c) Pippard precession: due to the spin of the pendulum mass, if the support
is fixed relative to the Earth. It is 103 times larger than the GM effect. Remedy:
subtract it from the data, mass must be long, thin and dense, e.g., tungsten.

(2) Position dependent forces:
(a) Frequency anisotropy: due to the ellipticity ε and large amplitude A =

5 cm. Cure: Length of the fiber, l = 2 m, and gravitational and electrostatic
pulls of large masses in parallel plates placed on each side of the pendulum or
use of a pendulum without fiber, with the magnetically levitated mass sliding
over a superconducting surface.

(b) Seismic noise. Remedy: sapphire fiber.
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Supermassive Stars with Local Anisotropy,
Possible Source of Some Quasars’ Luminosity?

Emilio Santos Corchero

Departamento de F́ısica, Universidad de Cantabria, Santander, Spain

Abstract. It is proposed that equilibrium configurations of relativistic stars should
correspond to the maximum of the entropy for given baryon number and mass. This
principle is a substitute for the standard assumption of local isotropy (isotropic pres-
sure). When applied to supermassive stars it leads to the prediction that stars with
mass smaller than a few million solar masses evolve without catastrophic collapse until
the central density and temperature are high enough for nuclear reactions to take place.

Keywords: Stars: supermassive - gravitation.

1 Introduction

The huge luminosity of quasars is currently attributed to accretion onto su-
permassive black holes [1]. It is assumed that such black holes arose from the
collapse of supermassive stars, these stars living only for rather short periods:
from 10 years if M ≈ 108M� to 105 years if M ≈ 104M�, M� being the solar
mass. According to standard calculations, with simplified models, the collapse
takes place when the central density and temperature surpass the critical values
[2]

�crit = 2.00× 1018
(
M�
M

)7/2

g cm−3 , Tcrit = 2.49× 1013M�
M

K , (1)

More realistic treatments give still smaller lifetimes.
In this paper I shall show that general relativity predicts longer lives pro-

vided we revise the theory of equilibrium of the relativistic stars consisting of
a plasma. We propose substituting the second law of thermodynamics (equilib-
rium corresponds to maximum entropy for fixed baryon number and fixed mass)
for the standard assumption of local isotropy (equilibrium corresponds to the
pressure being isotropic everywhere, if measured in a local frame). Using the
second law as a criterion for equilibrium, we shall prove that stars with mass
below about 107 solar masses evolve until central density and temperature are
large enough for nuclear burning to become relevant. This is more than an order
of magnitude greater than the standard limit M <∼ 105M�.

Our approach was used in a previous paper [3] but, in order to make an
analytical calculation, I assumed there that the local anisotropy was small and
used the first post-Newtonian approximation. Here I shall report on numerical
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calculations with the full general relativistic formalism although still assuming
small local anisotropy and using an approximate minimization procedure.

The possibility of local anisotropy in stars, maintained by the gravitational
field, is in opposition to the current wisdom, which takes local isotropy of any
non-rotating star consisting of a gravitationally bound plasma as a well estab-
lished paradigm. The standard argument for local isotropy is that the collisions
between the constituent particles (nuclei, electrons and photons) will rapidly
isotropize the momentum distribution of the particles around every point inside
the star.

In my opinion the correct assumption should be that collisions randomize the
distribution of particles in phase space. Now, the measure of randomness is the
entropy and consequently I propose that equilibrium is reached when the entropy
of the star is a maximum, that condition being the substitute for the current
assumption of local isotropy. The entropy maximization should be constrained by
baryon number and total mass-energy being fixed, together with the fulfilment
of Einstein’s equations of general relativity. Of course the proposed condition
of equilibrium is just a form of the second law of thermodynamics, appropriate
for relativistic stars. In the case of supermassive stars there is an additional
constraint, derived from the assumption of convective equilibrium, namely that
the entropy per baryon is a constant throughout the star. For a more detailed
discussion of this point see [4].

2 The Equations of Stellar Structure

We shall use a model of supermassive star consisting of a system of protons,
electrons and electromagnetic radiation, in convective equilibrium. We consider
the star as non-rotating and spherically symmetric. The model might be trivially
generalized to include a mixture of nuclei instead of pure protons, provided that
the mixture is homogeneous throughout the star.

As was explained in a previous paper [3], in the theory of supermassive stars
with local anisotropy everything is determined by an anisotropic temperature
field, T (r, u), where r is the radial coordinate and u is the cosines of the angle
between an arbitrary direction and the radial direction. Hence we may obtain
the entropy per baryon, s, (constant throughout the star) as a sum of the con-
tribution due to the radiation field, sf , plus that due to the electron gas, sg, the
contribution of the protons being negligible. Hence we may obtain the number
density n(r).

The anisotropic temperature may be expanded in Legendre polynomials,
Pl(u), and it is not difficult to see that only polynomials with even l should
appear. We shall assume that it is a good enough approximation to take only
the first two terms. We introduce a parameter, x(r), which measures de degree
of anisotropy at every point and is related to the radial, pr, and transverse, pt,
pressures by

x(r) ≡ pt(r)− pr(r)
3p(r)

, p ≡ pr + 2pt
3

. (2)
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Assuming that the local anisotropy is small (i.e. |x|  1) we shall retain only
terms up to order O(x2) in the contributions of the radiation field and ignore
the x dependence (putting x = 0) in the contributions of the plasma. Thus we
may obtain the mass (or energy) density, �(r), and the mean pressure, p(r), in
terms of n(r) and x(r) as follows

� ∼= mHn+ 3Kn4/3(1− x2)−5/8 +K ′n4/3 log n , (3)

p ∼= Kn4/3(1− x2)−5/8 +K ′n4/3
(

1
3

log n+ 1
)
. (4)

Here K, K
′
are constants related to the entropy per baryon, s, by the approxi-

mate expressions

K � a
3

(
3s

4mHa

)4/3

, K ′ � kB
s
K . (5)

The complete expressions, somewhat involved, may be seen in [2], where they are
calculated for x = 0. The factor giving the dependence on x(r) was calculated in
our previous paper [3] in the form 1 + 5x2/8. However, in order to improve the
accuracy of the numerical calculation we have here substituted (1− x2)−5/8 for
that expression. Both agree if |x| is small, but the new one has a more correct
behaviour when x approaches the value −1, where it diverges. The behaviour is
not correct if x is positive and large, but in the present article we are interested
only in anisotropies with x ≤ 0.

These functions should fulfil the following hydrostatic equilibrium equation
[5]

dpr(r)
dr

+
2
r

(pr(r)− pt(r)) +

(
M(r) + 4πr3pr(r)

)
(�(r) + pr(r))

r2 − 2rM(r)
= 0 , (6)

where the mass function, M(r), is defined by

M(r) =
∫ r

0
�(r)4πr2dr . (7)

The number of neutrons, N, and the total entropy, S, should be obtained from

N =
∫ R

0

n(r)√
1− 2M(r)/r

4πr2dr , S = Ns , (8)

where R is the radius of the star (where the radial pressure vanishes). The mass
(or energy), M, of the star is given by (7) with R taken as upper limit of the inte-
gral. Finding the equilibrium of the star is now stated as the variational problem
of searching for the function T (r, u) which maximizes the entropy S = sN , with
given N andM , subject to the constraint (6). An equivalent problem, more con-
venient for the calculation, is to fix the entropy per baryon, s, and the baryon
number, N , and search for the minimum mass, M . The equilibrium defined in
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this form is very plausibly stable because any departure from it, preserving N
and M , will diminish the total entropy. However we shall not study further the
stability problem in this paper.

After that we will solve the variational problem (minimization ofM for given
N and s) using the approximation of performing the variations within a restricted
family of functions. To do that we fix the form of the function x(r) to be

x(r) = Ar2�(r)4/3�(0)−2/3 , (9)

where A (< 0) is our variational parameter. The factor r2 ensures the correct
behaviour at the center of the star and the factor �(r)4/3 the correct behaviour
near the star surface, where �→ 0 ⇒ x→ 0. (The factor �(0)−2/3 was included
for convenience in the numerical integration). The results are not very sensitive
to the precise value of the exponent of � in the minimization procedure described
below and 4/3 proved to be a good enough choice.

With the method described it is possible to get the functions �(r), pr(r) and
pt(r) in terms of a single function n(r). Hence, (6) and (7) provide two coupled
first order differential equations in the unknowns n(r) and M(r) which may be
solved once we fix the central baryon density, nc, the entropy per baryon, s, and
the parameter A. (Getting the differential equations is straightforward and we
do not give the expressions which are somewhat involved). In practice we have
solved numerically the differential equations for several triplets {nc, s, A}, every
run giving us the star configuration (that is, the relevant quantities as functions
of the radial coordinate) and the values of the baryon number, N , the mass, M ,
and the total entropy, S, of the star. We systematically tried different triples
until we got the minimum mass for every desired baryon number and entropy.

An important parameter is the binding energy (or mass) of the star

B = NmH −M , (10)

mH being the mass of the hydrogen atom. We point out that B is roughly
proportional to the star age because the rate of mass loss by radiation is a
constant (1.4× 1014M/M� kg s−1), assuming radiation at the Eddington limit.
(Other processes will certainly change that figure, but it gives at least a rough
estimate of the star age.)

3 Results of the Calculations

We have checked that, for an entropy per baryon high enough for the central
density and temperature to be below the standard limits (see (1)), the mini-
mum mass for a given baryon number corresponds to a configuration with local
isotropy, that is A = 0. However our calculations show that, when the entropy
per baryon lies below the mentioned limit, the configuration of minimum mass
is anisotropic with pt < pr. At the same time that the entropy decreases, the
central density, �c, and the central temperature, Tc, increase. The radius changes
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Table 1. Entropy per baryon, S (units of Boltzmann constant), central density,
�c (kg/m3), central temperature, Tc (107K), radius, R (1012m), and binding mass,
B (1030kg), of stars with mass M = 106 M�. Variational parameter A in units
10−24kg−2/3. Stars with A 
= 0 present local anisotropy (see (9)).

A 0 0 -1 -2 -4 -6 -35 -100

S 1047 1025 1022 1018 1011 995 962 929

�c 2.00 2.10 2.74 4.10 8.00 12.2 64.0 216

Tc 2.4 2.5 2.8 3.2 4.0 5.5 7.8 9.5

R 2.325 2.289 2.288 2.280 2.272 2.235 2.174 2.122

B 2.1155 2.116 2.149 2.181 2.213 2.260 2.292 2.299

but slightly, which means that the central region of the star contracts at the ex-
pense of the medium region whilst the external region remains almost unchanged.
Some results may be found in the following table.

The most important conclusion of our calculation is that a star with mass
up to a few million solar masses will evolve until the nuclear burning at the
center of the star becomes quite important. In fact, we have obtained that the
increase in central temperature may be above 5 times for a star with one million
solar masses. This leads to a nuclear power per unit mass at the center of the
star similar to the power at the center of the Sun. The mass lost by radiation
(assumed at the Eddington limit), since the development of local anisotropy until
the star arrives at this state, shows that the duration of this process is of the
order of one hundred years. Without an explicit calculation it is difficult to know
whether the star will enter an almost stationary regime, suffer a violent explosion
or collapse to a black hole. We think that the first possibility is more likely
because, according to our calculations, the region with high enough temperature
and density to sustain nuclear burning is initially rather small. This is due to
the fact that we predict a pressure anisotropy with pr > pt and the gradient of
pressure is high in this case (see (6)). This means that nuclear burning will rise
rather slowly so that the star might arrive at a stationary regime without any
catastrophic process.

For a star with mass ten million solar masses or more, the contraction of
the central region becomes very rapid before nuclear burning is relevant. The
evolution cannot be considered a quasistatic progression and therefore it cannot
be studied with the methods of the present paper.

We finish remembering that our approximate solution of the variational prob-
lem explained in Sect. 2 gives a lower bound for the binding energy. This could
enlarge somewhat the range of masses where nuclear burning becomes relevant.
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Abstract. We study generalisations of the Einstein-Straus model to anisotropic set-
tings, by considering the matching of locally cylindrically symmetric static (LCS) re-
gions to G4 on S3 locally rotationally symmetric (LRS) spacetimes, preserving the
cylindrical symmetry. We show that such matchings are only possible for restricted
subsets of the LRS models in which one of the metric components is constant. When
the static part represents a finite interior cavity without holes, these results imply that
it is impossible to embed static LCS static objects (e.g. finite cosmic strings, bottle or
coin-shaped) in reasonable Bianchi cosmological models.

1 Introduction

How does the large scale dynamics of the universe influence the behaviour on
smaller scales? In trying to answer this question, Einstein and Straus [1] pro-
posed a model which resulted from the matching of two spacetimes: one being
Schwarzschild and the other Friedmann-Lemâıtre-Robertson-Walker (FLRW).
They showed that such matching was possible for dust FLRW models across any
comoving 2-sphere as long as the total mass inside the 2-sphere was equal to the
Schwarzschild mass. In this way they showed that the expansion of the universe
does not influence the spherical vacuum region surrounding the Schwarzschild
mass.

Despite its historical importance the Einstein-Straus model involves a number
of idealisations and an interesting question is whether the model is robust with
respect to various plausible generalisations. A number of attempts have been
made in this direction by considering generalisations of the matching spacetimes
to other source fields and geometries (see e.g. [2,3,4]). In particular, Mars has
shown that if a static cavity is to be embedded into an expanding FLRW model
then the cavity has to be “almost spherical”, i.e. the boundary of the cavity
must be a 2-sphere as seen from the FLRW exterior [5]. This result gives a clear
indication of instability of the original Einstein-Straus model.

Realistic cosmological models are not expected to be exactly homogeneous
and isotropic, which motivates the study of modifications of the Einstein-Straus
model to include anisotropic exteriors. We have obtained new results in this di-
rection by studying the matching of static and locally cylindrically symmetric
(LCS) cavities [6] with expanding locally rotationally symmetric (LRS) universes
[7]. We have also generalised these results to the case of spatially compact in-
teriors embedded in Bianchi cosmologies [7]. Here we give a brief account of
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some of these recent results. Greek symbols μ, ν, ... = 0, 1, 2, 3 and latin symbols
a, b, ... = 1, 2, 3.

2 The Matching Hypersurface and Matching Conditions

In order to seek a generalization of the Einstein-Straus model to anisotropic
settings we shall first take an interior spacetime (V−, g−) which is static and
LCS, and an exterior (V+, g+) which is assumed to be LRS with a group G4
on S3. Our aim is to match both spacetimes across a matching preserving the
cylindrical symmetry, i.e. a group G2 on S2. In practice we shall demand that
the matching hypersurface, say σ, is tangent to the orbits of the symmetry group
to be preserved [8,9]. If such matching is possible we can conclude (like Einstein
and Straus) that the exterior spacetime does not influence the geometry of the
interior. However, as we shall see, this will not be the case in these more general
settings.

The metric of the G4 on S3 LRS exterior can be cast in the form [7]:

ds2+ = −dt2 + b2dr2 − 2εrb2drdz + Ĉ2dϕ2 + 2Êdzdϕ+ D̂2dz2 , (1)

where b is a function of t and Ĉ, D̂ and Ê are functions of t and r such that

Ĉ2(t, r) = b2(t)Σ2(r, k) + na2(t)(F (r, k) + k)2 ,
D̂2(t, r) = a2(t) + εr2b2(t) , Ê(t, r) = na2(t)(F (r, k) + k) , (2)

where a is a function of t,

Σ(r, k) =

⎧⎨⎩
sin r, k = +1
r, k = 0

sinh r, k = −1
, F (r, k) =

⎧⎨⎩
− cos r, k = +1
r2/2, k = 0
cosh r, k = −1

, (3)

and ε = 0, 1; n = 0, 1; εn = εk = 0.
The most general matching surface σ, with intrinsic coordinates {λ, φ, ζ},

preserving the cylindrical symmetry, as seen from (V+, g+) is parametrized as
[7,8]

σ+ = {(t, r, ϕ, z) : t = t(λ), r = r(λ), ϕ = φ, z = ζ + fz(λ)} , (4)

where t(λ), r(λ) are arbitrary (just restricted by ṫ2 + ṙ2 �= 0) and fz(λ) satisfies
ḟz(λ)

σ= εr(λ)ṙ(λ)b2Ĉ2/(Ĉ2D̂2 − Ê2).
The interior metric g− is assumed to be static and LCS, admitting an Abelian

group G3 on T3 containing an orthogonally transitive (OT) abelian subgroup G2
on S2. Now, choosing the coordinate system {T, �, ϕ̃, z̃} adapted to the Killing
vectors {∂/∂T, ∂/∂ϕ̃, ∂/∂z̃}, where Ψ/Ψϕ̃ is the axial Killing, the metric g−

reads

ds2− = −A2dT 2 − 2cA2dTdz̃ +B2d�+ C2dϕ̃2 + 2Edϕ̃dz̃ +D2dz̃2 , (5)

where the functions A,B,C,D and E depend only on �. The constant c, which
is locally non-essential, corresponds to a degree of freedom introduced by the
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matching procedure (see [7,8]). The hypersurface σ as seen from (V−, g−) can
be shown to be parametrised by [7,8]

σ− = {(T, �, ϕ̃, z̃) : T = T (λ), � = �(λ), ϕ̃ = φ+ fϕ̃(λ), z̃ = ζ + fz̃(λ)} , (6)

where ḟϕ̃ = −E/C2ḟz̃ and ḟz̃ = cA2C2Ṫ /(C2D2 − E2).
The matching of two spacetimes (V±, g±) requires two sets of (matching or

junction) conditions at σ. The first set of junction conditions [10] ensure the
continuity of the metric across the matching hypersurface; while the second set
is equivalent to a non-singular Riemann tensor distribution [10,11,12].

The preliminary junction conditions require the equality of the first funda-
mental forms on σ+ and σ− [11,12], and in our case give

− Â2ṫ2 + B2ṙ2
σ= −A2Ṫ 2 +B2�̇2 , D̂

σ= D , Ĉ σ= C , Ê σ= E , (7)

where a dot denotes a derivative with respect to λ, σ= means that both sides of
the equality are evaluated on σ, and where we have defined

B2 ≡ b2(1− εr2b2/D̂2) and A2 = A2 [1 + c2A2C2/(C2D2 − E2)
]
.

The second set of junction conditions require the equality of the generalised sec-
ond fundamental forms H±

ab = −�±ν e±μa ∇±
μ e

±ν
b , where �± are vectors transversal

to σ± called rigging vectors and the three vector fields e±
a generate σ±. The

rigging vectors are characterized by n±(�±) �= 0, where n± are the normal forms
to σ±. The second junction conditions give rather lengthy expressions that can
be found in [7]. An important consequence of these conditions is that they im-
ply three relations that involve only the functions of the exterior metric. These
so-called exterior conditions [2,7,8] are given by

D̂,tĈ,r − D̂,rĈ,t σ= 0 , (8a)

Ê,tD̂,r − Ê,rD̂,t σ= 0 , (8b)

Ê,tĈ,r − Ê,rĈ,t σ= 0 . (8c)

We shall summarise in the next section the consequences of imposing the exterior
conditions (8) on metric (1).

3 Results

We apply the explicit exterior conditions across non-spacelike hypersurfaces (so
that ṫ �= 0, Ṫ �= 0 on σ) for the LRS homogeneous spacetimes (1) by substituting
the metric functions (2) in (7) and (8). The exterior condition (8a) implies that
the only possible matchings are those satisfying

(a,t
σ= 0) ∨

(
b2Σ,r + a2n(F + k) σ= 0

)
. (9)

Similarly, condition (8b) gives

(a,t
σ= 0) ∨ (n = 0) . (10)
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Combining conditions (9) and (10) and excluding Σ,r
σ= 0, which is eventually

impossible [7], we find that a,t
σ= 0 is a necessary condition for the required

matching which, since ṫ does not vanish over the whole of σ, implies a,t = 0 and
thus

a(t) = constant (≡ β) . (11)

Considering the remaining exterior condition (8c), we find

(b,t
σ= 0) ∨ (n = 0) . (12)

As a result, for n �= 0, a non-static metric (1) cannot be matched to the static
metric (5) across a non-spacelike hypersurface.

Since we are interested in a non-static LRS region, we shall concentrate on
the n = 0 case. In this case, the matching across a non-spacelike σ is, in principle,
possible for a = const. and the LRS metric coefficients take the form

Ĉ = b(t)Σ(r, k) , D̂2 = β2 + εr2b2(t)(= β2 + εĈ2) , Ê = 0 . (13)

The condition n = 0 rules out the metric forms in (1) which include the Bianchi
types II, VIII and IX, where the latter is an anisotropic generalization of FLRW
k = +1 metrics [7]. Our result can be summarized as follows:

Proposition 1. The only possible non-static G4 on S3 LRS spacetimes that
can be matched to an OT cylindrically symmetric static spacetime across a non-
spacelike hypersurface preserving the cylindrical symmetry are given by

ds2 = −dt2 + β2dz2 + b2(t)
[
(dr − εrdz)2 +Σ2(r, k)dϕ2] , (14)

where β is a constant, Σ and k are given by (3), and ε = 0, 1 such that εk = 0.

We note that metric (14) with k = +1 is a Kantowski-Sachs metric. The cases
k = 0 and k = −1 for ε = 0 include Bianchi types III, I and VII0, which
generalise FLRW k = 0 metrics. The case ε = 1, which includes Bianchi types
V and VIIh, generalises k = −1 FLRW metrics.

So far we have considered locally cylindrically symmetric configurations. Con-
cerning global configurations, we can apply our results to the case of spatially
homogeneous non-static exterior spacetimes (with a G3 on S3). This follows from
the fact that the model for a spatially bounded interior region whose bounding
surface is topologically S2 must preserve the axis of symmetry across this bor-
der. Therefore the homogeneous exterior has to be LRS with a G4 on S3 [7]. We
can state these results as corollaries of Proposition 1:

Corollary 1. A non-static homogeneous Bianchi II, VIII or IX spacetime can-
not be matched to a spatially compact and simply connected OT LCS static region
across a non-spacelike hypersurface preserving the symmetry.

Corollary 2. The only possible non-static spatially homogeneous spacetimes
that can be matched to a spatially compact and simply connected OT LCS static
region across a non-spacelike hypersurface preserving the symmetry are given by
(14) with k = 0,−1.
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4 Conclusion

We have studied a generalisation of the Einstein-Straus model, by considering a
LCS static cavity embedded in an expanding homogeneous and anisotropic LRS
region. We have derived the matching conditions for such spacetimes and have
found that they impose strong constraints on the LRS metrics, by implying
that a,t = 0 and n = 0. The former implies that no dynamical evolution is
allowed along a spacelike direction as seen by the observer Ψt. This direction
is orthogonal to the orbits of the subgroup G3 on S2 of the LRS when ε = 0.
Condition n = 0 implies that it is impossible to have an exterior metric of
Bianchi types II,VII or IX. Our main result in this connection, expressed in
Proposition 1, is that the exteriors can only take very particular forms within the
Bianchi types I,III,V,VII0,VIIh or Kantowski-Sachs metrics. In the case of global
symmetry, we were able to reformulate our results in corollaries 1 and 2 with the
weaker assumption of exterior homogeneity, instead of LRS. These results make
no reference to the matter content and are therefore, in this sense, completely
general. They have the important consequence of not allowing embeddings of
LCS static objects (e.g. finite cosmic strings, bottle and coin shaped objects) in
reasonable anisotropic Bianchi cosmologies.
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